Intermolecular Interaction between Chlorpheniramine and 1-ethanol at Various Temperatures

2020 ◽  
Vol 17 (2) ◽  
pp. 162-169
Author(s):  
Sampandam Elangovan ◽  
Tilahun Diriba Garbi ◽  
Ponnusamy Thillaiarasu

Density (ρ), viscosity (η) and ultrasonic velocity (U) of chlorpheniramine with 1-ethanol mixtures are measured in a range of temperatures 303K, 308K and 313K. By using the systematic measurements, various physico chemical quantities, adiabatic compressibility (β), free length (Lf), free volume (Vf), viscous relaxation time (τ) and Gibbs free energy (ΔG) are attained. The deviations of those quantities to their ideal values are derived and revealed with the intermolecular interactions. The standard deviations and the coefficients of Redlich Kister polynomials of excess quantities are also determined to validate the calculations. From these observations, the existence of intermolecular interaction is confirmed and the strength of interactions with the temperatures as 303K>308K>313 K.

2015 ◽  
Vol 1086 ◽  
pp. 111-119
Author(s):  
Selvi C. Senthamil ◽  
S. Ravichandran ◽  
C.P. Malliga ◽  
C. Thenmozhi ◽  
V. Kannappan

Ultrasonic velocity and density of salicilaldehyde with iodine in hexane has been measured at 293.15K, 298.15K, 303.15K and 308.15K in different concentration. Ultrasonic velocity has been measured using single frequency interferometer at 2MHz (Model F-81). By using the Ultrasonic velocity (u), density (ρ) and coefficient of viscosity (η) and the other acoustical parameters adiabatic compressibility (κ), free length (Lf), interaction parameter (α), Free volume (Vf) were calculated. The addition of hexane with a mixture leads to a compact structure due to presence of dipolar type interaction. This contributes to the decrease in free volume values and the internal pressure shows an increasing trend. The results have been discussed in terms of solute-solute and solute-solvent interactions between the component and the compatibility of these methods in predicting the interactions in these mixtures has also been discussed.Key Words salicilaldehyde, iodine, hexane, Ultrasonic velocity, molecular interactions.


2019 ◽  
Vol 31 (4) ◽  
pp. 960-964
Author(s):  
S. Farook Basha ◽  
M. Syed Ali Padusha

This work deals with the ultrasonic studies of the Mannich bases (morpholin-4-yl)(pyridin-3- yl)methyl]hydrazine carboxamide (MPH) and (morpholino)(thiophen-2-yl)methyl)nicotine hydrazide (MTN) by the measurements of parameters such as ultrasonic velocity (U), density (ρ), viscosity (η), adiabatic compressibility (κ), intermolecular free length (Lf), molar volume (Vm), relaxation time (τ), specific acoustic impedance (Z), lenard jones potential (LJP), internal pressure (πi), free volume (Vf) and molecular cohesive energy (MCE), available volume (Va), Gibbs free energy (ΔG) and absorption coefficient (α/f2). These results are inferred that the strong interaction exists between the solvent (DMSO) and solute (MPH and MTN).


Author(s):  
Baljeet Singh Patial

Ultrasonic velocity, viscosity and density studies on solution of tetrapentylammonium bromide (Pen4NBr) in N,N-dimethylformamide, ethylmethylketone (EMK) and DMF-EMK solvent mixtures containing 0, 20, 40, 60, 80 and 100 mol % of DMF at 298, 308 and 318K have been reported. From the velocity, viscosity and density data values, various parameters namely, the adiabatic compressibility (β), Intermolecular free length (Lf), specific acoustic impedance (Z), free volume (Vf), internal pressure (πi) and relaxation time (τ) have been calculated. All these parameters have been discussed separately to throw light on the solute-solvent and solvent-solvent interactions.


2012 ◽  
Vol 217-219 ◽  
pp. 174-178
Author(s):  
Shao Bo Zheng ◽  
Chun Feng Wu ◽  
Cun Bo Yang ◽  
Yue Gong ◽  
Hui Gai Li

Activity coefficients and concentrations of dissolved magnesium and sulfur in grain boundary are two essential parts for the calculation of the Gibbs free energy of MgS superfine inclusion in grain boundary. Activity coefficients of dissolved magnesium and sulfur in grain boundary are gained first by the use of Miedema Model and Free Volume Theory. Concentrations of dissolved magnesium and sulfur in grain boundary of Fe-matrix are gained by Mclean’s equation. At last the Gibbs free energy of MgS in grain boundary is -14.048KJ/mol in E-class ship plate steel at T=1363K. By comparing the values of the Gibbs free energy of MgS in grain boundary and that in grain interior, a conclusion can be come to that MgS superfine inclusions may form in grain boundary instead of in grain interior.


2009 ◽  
Vol 6 (1) ◽  
pp. 138-140 ◽  
Author(s):  
R. Nithya ◽  
S. Nithiyanantham ◽  
S. Mullainathan ◽  
M. Rajasekaran

The ultrasonic velocity, density and viscosity at 303 K have been measured in the binary systems of toluene with benzene ando-xylone with benzene. The acoustical parameters such as adiabatic compressibility, free length, free volume and acoustical impedance are calculated. The results are interpreted in terms of molecular interaction between the components of the mixtures


2011 ◽  
Vol 8 (3) ◽  
pp. 1094-1101 ◽  
Author(s):  
Shaik Babu ◽  
A. Radhakrishna Murthy

The ultrasonic velocity (U), density (ρ) and viscosity (η) measurements have been carried out for the binary mixtures of acetyl acetone with benzene, carbon tetra chloride and isoamyl alcohol at 301 K. From the measured values of ultrasonic velocity, density and viscosity, parameters such as internal pressure (πi), free volume (Vƒ) and acoustical parameters such as adiabatic compressibility (β), inter molecular free length (Lƒ), acoustic impedance (Z), relaxation time (τ) have been calculated. The results have been analyzed and interpreted in terms of molecular interactions.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Richa Saxena ◽  
S C Bhatt ◽  
Manish Uniyal ◽  
S C Nautiyal

Ultrasonic investigation provides a wealth of information in understanding the intermolecular interaction of solute and solvent. An attempt has been made to measure density, viscosity and ultrasonic velocity of aqueous solution of polyvinyl alcohol of molecular weight approximately 140,000 at different temperatures 35οC, 40oC, 45οC, 50oC, 55οC, 60oC, 65οC at 0.8% concentration. Ultrasonic velocity is measured using ultrasonic interferometer at 1 MHz frequency. The acoustical parameters like, adiabatic compressibility, acoustic impedance, intermolecular free length and relaxation time have been calculated at different temperatures. These parameters were used to understand the behaviour of solute and solvent.


Author(s):  
G. Alamelumangai ◽  
N. Santhi

The wide spread use of 1,3,4-oxadiazoles as a scaffold in medicinal chemistry establishes this moiety as an important bioactive class of heterocycles. In the present study ultrasonic velocity (u), density (ρ) and viscosity (η) have been measured at frequency 2 MHz in the binary mixtures of 1,3,4-oxadiazole derivatives in acetone at 303.15 K using ultrasonic interferometer technique. The measured value of ultrasonic velocity, density and viscosity have been used to estimate the acoustical parameters namely adiabatic compressibility (βad), relaxation time (τ), acoustic impedance (Zi), free length (Lf), free volume (Vf) and internal pressure (πi), with a view to investigate the nature and strength of molecular interactions. The obtained result support the occurrence of molecular association through hydrogen bonding in the binary liquid mixtures.


The Ultrasonic velocity(U), density(ρ), and viscosity(η) have been measured experimentally for the ternary liquid mixtures of 3(meta) methoxy phenol(MMP), 1 propanol and n hexane at various temperatures viz., 303 K, 308 K and 313 K at constant frequency of 2 MHz. for different concentrations ranges from 0.001M to 0.01M. The thermodynamic and acoustical parameters such as adiabatic compressibility(β), Rao constant(R), absorption coefficient (α/f2 ), internal pressure(πi), cohesive energy(CE), free volume(Vf), free length(Lf), acoustic impedence(z), available volume(Va), viscous relaxation time and Lenard Jones potential were calculated from the experimental data. The various excess properties including excess Ultrasonic velocity, excess acoustic impedence, excess free length, excess adiabatic compressibility, excess free volume and excess internal pressure were also computed. The variation of these excess parameters with respect to concentration and temperatures have been discussed in the light of molecular interaction. The molecular interactions were predicted based on the results obtained for ultrasonic velocities of different concentrations of the ternary mixtures at different temperatures.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Richa Saxena ◽  
SC Bhatt ◽  
Manish Uniyal ◽  
S C Nautiyal

Ultrasonic velocity, density, and viscosity of polyethylene glycol have been measured for the solution in water at concentration range of 0.3% to 1% at temperature 50oC. Ultrasonic velocity has been measured using ultrasonic interferometer at 1MHz frequency. By using the values of ultrasonic velocity, density, and viscosity, various acoustical parameters like adiabatic compressibility, acoustic impedance, intermolecular free length, and relaxation time have been calculated. The change in these acoustical parameters is explained in terms of solutesolvent interaction in a polymer solution.


Sign in / Sign up

Export Citation Format

Share Document