scholarly journals Improving the cementation of the tibial component in knee arthroplasty

2021 ◽  
Vol 10 (8) ◽  
pp. 467-473
Author(s):  
Juan Ramón Rodríguez-Collell ◽  
Damian Mifsut ◽  
Amparo Ruiz-Sauri ◽  
Luis Rodríguez-Pino ◽  
Eva María González-Soler ◽  
...  

Aims The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray. Methods In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level. Results At the epiphyseal level, Technique 2 gave the greatest depth compared to the other investigated techniques. At the endomedular metaphyseal level, Technique 1 showed greater cement penetration than the other techniques. Conclusion The best metaphyseal cementation technique of the tibial component is bone cementation with cement restrictor. Additionally, if full tibial component cementation is to be done, the cement volume used should be about 40 g of cement, and not the usual 20 g. Cite this article: Bone Joint Res 2021;10(8):467–473.

2018 ◽  
Vol 27 (4) ◽  
pp. 1270-1279 ◽  
Author(s):  
ShiZhong Gu ◽  
Shinichi Kuriyama ◽  
Shinichiro Nakamura ◽  
Kohei Nishitani ◽  
Hiromu Ito ◽  
...  

2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0011
Author(s):  
Daniel Sturnick ◽  
Guilherme Saito ◽  
Jonathan Deland ◽  
Constantine Demetracopoulos ◽  
Xiang Chen ◽  
...  

Category: Ankle Arthritis Introduction/Purpose: Loosening of the tibial component is the primary failure mode in total ankle arthroplasty (TAA). The mechanics of the tibial component loosening has not been fully elucidated. Clinically observed radiolucency and cyst formation in the periprosthetic bone may be associated with unfavorable load sharing at and adjacent to the tibial bone-implant interface contributory to implant loosening. However, no study has fully investigated the load transfer from the tibial component to the bone under multiaxial loads in the ankle. The objective of this study was to utilize subject-specific finite element (FE) models to investigate the load transfer through tibial bone-implant interface, as well as periprosthetic bone strains under simulated multiaxial loads. Methods: Bone-implant FE models were developed from CT datasets of three cadaveric specimens that underwent TAA using a modern fixed-bearing tibial implant (a cobalt-chrome tray with a polyethylene bearing, Salto Talaris, Integra LifeSciences). Implant placement was estimated from the post-operative CT scans. Bone was modeled as isotropic elastic material with inhomogeneous Young’s modulus (determined from CT Hounsfield units) and a uniform Poisson’s ratio of 0.3. The tibial tray (Young’s modulus: 200,000 MPa, Poisson’s ratio: 0.3) and the polyethylene bearing (Young’s modulus: 600 MPa, Poisson’s ratio: 0.4) were modeled as isotropic elastic. A 100-N compressive force, a 300-N anterior force, and a 3-Nm moment were applied to two literature based loading regions on the surface of the polyethylene bearing. The proximal tibia was fixed in all directions. The bone-implant contact was modeled as frictional with a coefficient of 0.7, whereas the polyethylene bearing was bonded to the tray. Results: Along the long axis of the tibia, load was transferred to the bone primarily through the flat bone-contacting base of the tibial tray and the cylindrical top of the keel, little amount of load was transferred to the bone between those two features (Fig. 1A). Low strain was observed in bone regions medial and lateral to the keel of the tibial tray, where bone cysts were often observed clinically (Fig. 1A). On average, approximated 70% of load was transferred through the anterior aspect of the tibial tray at the flat bone-contacting base, which corresponded to the relatively high bone strain adjacent to the implant edge in the anterior bone-implant interface (Fig. 1B). Conclusion: Our results demonstrated a two-step load transfer pattern along the long axis of the tibia, revealing regions with low bone strain peripheral to the keel indicative to stress shielding. Those regions were consistent with the locations of bone cysts observed clinically, which may be explained by the stress shielding associated remodeling of bone. These findings could also describe the mechanism of implant loosening and failure. Future studies may use our model to simulate more loading scenarios, as well as different implant placement and design, to identify means to optimize load transfer to the bone and prevent stress shielding.


2019 ◽  
Vol 33 (05) ◽  
pp. 466-473
Author(s):  
Chao-Hua Fang ◽  
Cheng-Kung Cheng ◽  
Tie-Bing Qu ◽  
Jun-Hui Zhang ◽  
Bo Zhang ◽  
...  

AbstractRotational malalignment between the femoral and tibial components in total knee arthroplasty (TKA) can affect clinical outcomes, but there is no consensus on how to best determine tibia tray orientation. The posterolateral corner-locked (PLCL) technique may be a new method. This study aims to assess the applicability of this technique in a Chinese population. Forty normal Chinese volunteers were recruited and underwent computed tomography (CT) of the lower limbs. Knee model reconstructions and simulated standard tibial osteotomy were conducted digitally. The transepicondylar axis (TEA), the Akagi line, and the line connecting the medial third of the tibial tubercle with the midpoint of the posterior cruciate ligament (PCL) were projected to the tibial cross-section and marked. The PLCL technique was applied using either symmetrical or asymmetrical tibial tray templates, and the anteroposterior (AP) axis of the tibial tray was marked. The angles between the TEA and these lines were calculated, and the statistical differences were analyzed. The angle between the TEA and the Akagi line and between the TEA and the line connecting the medial third of the tibial tubercle with the midpoint of the PCL were 96.90 ± 5.57 and 107.31 ± 5.95 degrees, respectively. The angles between the TEA and the AP axis of the symmetrical and the asymmetrical design tibial trays were 94.01 ± 4.21 and 96.65 ± 4.70 degrees, respectively. Except for the Akagi line and AP axis of the asymmetrical tibial tray, statistical differences were found between all lines (p < 0.05). The PLCL technique is principally suitable for Chinese patients requiring TKA when using the tibial component referred to in this study, although it may result in slight external rotation.


2018 ◽  
Vol 32 (09) ◽  
pp. 886-890
Author(s):  
Thomas Wetzels ◽  
Joost van Erp ◽  
Reinoud W. Brouwer ◽  
Sjoerd K. Bulstra ◽  
Jos J. A. M. van Raay

AbstractAseptic loosening remains to be a major reason for revision in total knee arthroplasty. Cement penetration of 2 to 5 mm increases the interface strength and consequently decreases the likelihood of loosening. But despite this overall accepted optimal cement penetration, there is still a wide variety of cementing techniques used in total knee arthroplasty. The purpose of this study was to evaluate two cementing techniques on the tibial and femoral sides, with regard to cement penetration. Five paired cadaveric knees were used. A total knee arthroplasty was placed according to standard practice, with a setup that mimics the clinical practice. On the tibial side, we compared the application of cement to the bone surface alone, to the application of cement to both the bone surface and the component. On the femoral side, we compared the application of cement to the posterior condyles of the component and to the anterior and distal parts of the bone surface, to the application of cement to the component alone. After the cement had cured, the arthroplasty was removed and the bone was examined to determine the cement penetration using digital software. When applying cement to both the tibial bone surface and the tibial component, the cement penetration increased compared with applying cement to the tibial bone surface alone (3.46 vs. 2.66 mm, p = 0.007). With regard to the distal femoral cuts, the cement penetration did not vary when applied to either the bone or the component (2.81 vs. 2.91 mm). But applying it to the anterior bone surface did seem preferable, when compared with only applying it to the component. The average cement penetration did not differ, but applying the cement to the bone did enlarge the total length of the cement distribution (2.48 vs. 0.96 mm, p = 0.011). Almost no cement was detected on the posterior surface of the femoral cut. We concluded that applying cement to both the tibial bone surface and the component improves cement penetration.


Author(s):  
Shouye Hu ◽  
Chao Lu ◽  
Zhi Yang ◽  
Kan Peng

Objective: The use of screws and cement is a well–known technique for repairing proximal tibial bone defects during primary total knee arthroplasty (TKA). The purpose of this study was to summarize our experience of using of screws and cement for R and C tibial bone defects in primary TKA.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Changjiao Sun ◽  
Xin Yang ◽  
Xiaofei Zhang ◽  
Qi Ma ◽  
Peng Yu ◽  
...  

Abstract Background Cement mantle penetration and the cement–bone interface strength were critical to a successful primary total knee arthroplasty (TKA). It remained unclear whether decreased blood and fat in the cancellous bone achieved with the use of a tourniquet increases tibial cement mantle penetration in different zones on AP and lateral view in TKA according to criteria defined by the Knee Society Scoring System (KSS). The purpose of this study was to determine whether tourniquet use influences tibial cement mantle penetration in different zones on AP and lateral view in TKA according to KSS. Methods We conducted a meta-analysis to identify studies involving the impact of tourniquet use and no tourniquet use on tibial bone cement penetration in primary TKA in electronic databases, including Web of Science, Embase, PubMed, Cochrane Controlled Trials Register, Cochrane Library, Highwire, CBM, VIP, Wanfang database, up to January 2021. Finally, we identified 1231 patients (1231 knees) assessed in twelve studies. Results Tourniquet use increases the cumulative cement mantle penetration (P < 0.00001), mean cement mantle penetration (P = 0.004), and cement mantle in zone 3(P < 0.0001) on AP view. However, there were no significant differences in cement mantle in zone 1(P = 0.5), zone 2(P =0 .54), zone 4(P = 0.07) on AP view, and zone 1(P = 0.32), zone 2(P = 0.38) on lateral view between two groups. There were also no significant differences in length of surgery(P = 0.7), change in hemoglobin(P = 0.4), transfusion rates(P = 0.47), and complications such as muscular calf vein thrombosis(P = 0.21), superficial infection (P = 0.72), and deep vein thrombosis (P = 0.66) between two groups. Conclusion The application of a tourniquet increases the thickness of the tibial bone cement penetration—the increase in the thickness of bone cement penetration mainly located in zone 3 on the anteroposterior (AP) view.


Sign in / Sign up

Export Citation Format

Share Document