Leaf Water Potential Measurement Method Using Computer Image Analysis in Satsuma Mandarin

Author(s):  
Kriston-Vizi ◽  
Janos ◽  
Umeda ◽  
Mikio ◽  
Miyamoto ◽  
...  
2003 ◽  
Vol 9 (3-4) ◽  
Author(s):  
J. Kriston-Vizi ◽  
M. Umeda ◽  
K. Miyamoto ◽  
A. Ferenczy

Mandarin fruit sugar content can be increased when subjecting the satsuma mandarin tree (Citrus unshiu MARC. var. satsuma) to moderate water stress by mulching during the period of active sugar accumulation, thereby fruit quality improvement can be realized. In the frame of the precision agriculture production system, a non-destructive measuring method development became necessary based on remote sensing, field spectroscopy and image analysis, to be able to measure the degree of water stress. Large amount of visual information have been recorded at ground level, in near infrared, red and green channels by a false color digital camcorder designed specially for remote sensing applications. A method have been found to be able to calculate the absolute reflection of mandarin leaf surface by comparing leaf reflectance with known reference target reflectance, thereby established the basis of further studies in this topic. Leaf absolute reflection can be measured reliably, under variable natural illumination at field conditions. Functional correlation can be searched between visual information and leaf water potential measured by PMS pressure chamber.


1996 ◽  
Vol 67 (10) ◽  
pp. 878-881
Author(s):  
Keigo KUCHIDA ◽  
Shino HAMAYA ◽  
Yusuke SAITO ◽  
Mitsuyoshi SUZUKI ◽  
Shunzo MIYOSHI

Author(s):  
W.J. de Ruijter ◽  
P. Rez ◽  
David J. Smith

There is growing interest in the on-line use of computers in high-resolution electron n which should reduce the demands on highly skilled operators and thereby extend the r of the technique. An on-line computer could obviously perform routine procedures hand, or else facilitate automation of various restoration, reconstruction and enhan These techniques are slow and cumbersome at present because of the need for cai micrographs and off-line processing. In low resolution microscopy (most biologic; primary incentive for automation and computer image analysis is to create a instrument, with standard programmed procedures. In HREM (materials researc computer image analysis should lead to better utilization of the microscope. Instru (improved lens design and higher accelerating voltages) have improved the interpretab the level of atomic dimensions (approximately 1.6 Å) and instrumental resolutior should become feasible in the near future.


1986 ◽  
Vol 78 (4) ◽  
pp. 749-751 ◽  
Author(s):  
S. K. Hicks ◽  
R. J. Lascano ◽  
C. W. Wendt ◽  
A. B. Onken

Crop Science ◽  
1986 ◽  
Vol 26 (2) ◽  
pp. 380-383 ◽  
Author(s):  
R. C. Johnson ◽  
H. T. Nguyen ◽  
R. W. McNew ◽  
D. M. Ferris

2021 ◽  
Vol 255 ◽  
pp. 112274
Author(s):  
S. Junttila ◽  
T. Hölttä ◽  
E. Puttonen ◽  
M. Katoh ◽  
M. Vastaranta ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 311
Author(s):  
Vegas Riffle ◽  
Nathaniel Palmer ◽  
L. Federico Casassa ◽  
Jean Catherine Dodson Peterson

Unlike most crop industries, there is a strongly held belief within the wine industry that increased vine age correlates with quality. Considering this perception could be explained by vine physiological differences, the purpose of this study was to evaluate the effect of vine age on phenology and gas exchange parameters. An interplanted, dry farmed, Zinfandel vineyard block under consistent management practices in the Central Coast of California was evaluated over two consecutive growing seasons. Treatments included Young vines (5 to 12 years old), Control (representative proportion of young to old vines in the block), and Old vines (40 to 60 years old). Phenology, leaf water potential, and gas exchange parameters were tracked. Results indicated a difference in phenological progression after berry set between Young and Old vines. Young vines progressed more slowly during berry formation and more rapidly during berry ripening, resulting in Young vines being harvested before Old vines due to variation in the timing of sugar accumulation. No differences in leaf water potential were found. Young vines had higher mid-day stomatal conductance and tended to have higher mid-day photosynthetic rates. The results of this study suggest vine age is a factor in phenological timing and growing season length.


Sign in / Sign up

Export Citation Format

Share Document