INFLUENCE OF HYDROLOGIC RESPONSE UNIT (HRU) DISTRIBUTION ON SWAT MODEL FLOW AND SEDIMENT PREDICTIONS

2013 ◽  
Author(s):  
Kati L White and Indrajeet Chaubey
2021 ◽  
Vol 10 (1) ◽  
pp. 69-76
Author(s):  
Mohd Rosli Nur SUHAİLA ◽  
Ahmad ZUHAİRİ ◽  
Azman Nur Syahira AZLYN ◽  
Mustapa Mohd ZAİNİ

Author(s):  
. Azmeri ◽  
Alfian Yulianur ◽  
Maimun Rizalihadi ◽  
Shafur Bachtiar

<p>Sediments deposition derived from the erosion in upstream areas can lead to river siltation or canals downstream irrigation. According to the complexity of erosion problem at Keuliling reservoir, it is essential that topography, hydrology, soil type and land use to be analyzed comprehensively. Software used to analyze is AVSWAT 2000 (Arc View Soil and Water Assessment Tools-2000), one of the additional tool of ArcView program. The results obtained are the watershed delineation map, soil type map to produce soil erodibility factor (K) which indicates the resistance of soil particles toward exfoliation, land use map to produce crop management factor (C) and soil conservation and its management factors (P). Hydrology analysis includes soil type, land use and utility for the erosion rate analysis through Hydrologic Response Unit (HRU). The biggest HRU value of sub-basin is on area 5 and the lowest one is on area 10. All four HRU in sub-basin area 5 are potentially donating high value for HRU. In short, this area has the longest slope length so that it has a large LS factor. About 50% of the land was covered by bushes which gain higher C factor rather than forest. Moreover, it has contour crop conservation technique with 9-20 % declivity resulting in having dominant factor of P. Soil type is dominated by Meucampli Formation which has soil erodibility factor with high level of vulnerable toward the rainfall kinetic energy. All in all, the vast majority of HRU parameters in this sub-basin area obtain the highest HRU value. Hydrology analysis, soil type, and use-land are useful for land area analysis that is susceptible to erosion which was identified through Hydrologic Response Unit (HRU) using GIS. As the matter of fact, spatially studies constructed with GIS can facilitate the agency to determine critical areas which are needed to be aware or fully rehabilitated.</p>


2021 ◽  
Vol 31 (4) ◽  
pp. 696-710
Author(s):  
Liupeng Jiang ◽  
Jinghai Zhu ◽  
Wei Chen ◽  
Yuanman Hu ◽  
Jing Yao ◽  
...  

Water ◽  
2011 ◽  
Vol 3 (3) ◽  
pp. 819-842 ◽  
Author(s):  
Youn Shik Park ◽  
Jeong Hee Park ◽  
Won Seok Jang ◽  
Ji Chul Ryu ◽  
Hyunwoo Kang ◽  
...  

2021 ◽  
Vol 886 (1) ◽  
pp. 012097
Author(s):  
Wahyuni ◽  
Andang Suryana Soma ◽  
Usman Arsyad ◽  
Riska Sariyani ◽  
Baharuddin Mappangaja

Abstract Erosion and sedimentation are problems that often occur in watershed ecosystems. The SWAT model (Soil and Water Assessment Tool) can be used to determine the output of a watershed’s performance. Jenelata sub-watershed area is one of the largest sub-watersheds of the Jeneberang watershed with 22.800 ha. This study aims to determine the spatial distribution of the hydrologic response unit (HRU) and analyze the rate of erosion and sedimentation in the Jenelata sub-watershed. The results showed that most HRUs are in secondary dryland forests with 447 HRU (19.09%). The level of erosion in the very light category, namely 5.74 ton/ha/year (37.53%) and light 34.71 ton/ha/year (27.76%), was in the villages of Moncongloe, Tana Karaeng, Sicini, Paladindang, Towata, Parang Lampoa, Manuju, and Buakkang. Meanwhile, moderate erosion was 104.07 ton/ha/year (23.92%), high 289.65 ton/ha/year (9.59%), and very high 553.74 ton/ha/year (1.20%) located in the villages of Pattallikang, Mangempang, Bontomanai, Bissoloro, Rannaloe, Jenebatu, and Sapaya. The largest sedimentation is 133.18 ton/ha/year in sub-watershed17, located in Bissoloro and Rannaloe villages.


Author(s):  
. Emiyati ◽  
Eko Kusratmoko ◽  
. Sobirin

Hydrologic Response Unit (HRU) is a unit formed of hydrological analysis based on geology and soil type, slope, and land cover. This paper discussed the spatial pattern of Hydrologic Response Unit (HRU) in 1997-2009 and its impact on flow Ci Rasea watershed temporally. In this study, SWAT (Soil and Water Assessment Tool) model, based on land cover changed, was used to get HRU and flow in spatially and temporally. This method used Landsat TM 1997, 2003 and 2009 data for land cover and daily rainfall 1997-2009 for flow modeling. The results showed the spatial pattern of HRU in temporally was affected by landcover based on the changing of HRU. The majority of HRU spatial pattern at Ci Rasea watershed were clustered. During 1997-2009, accumulated surface runoff and the changing of flow discharge were affected by changes of HRU spatial pattern. The biggest accumulated surface runoff in Ci Rasea watershed influenced by HRU of agricultural cropland in area of clay soil type with slope slightly obliquely. While the smallest accumulated surface runoff in Ci Rasea watershed influenced by HRU of paddy field in the area of sandy loam soil type with a gentle slope. The changes of HRU agriculture cropland become HRU mixed cropland in area clay soil type with slope at a slight angle and HRU agriculture cropland become HRU paddy field in area, sandy loam soil type with a gentle slope could be decreasing the accumulation of surface runoff in Ci Rasea watershed.


2019 ◽  
Vol 35 (5) ◽  
pp. 723-731 ◽  
Author(s):  
Gurdeep Singh ◽  
Dharmendra Saraswat ◽  
Naresh Pai ◽  
Benjamin Hancock

Abstract. Standard practice of setting up Soil and Water Assessment Tool (SWAT) involves use of a single land use (LU) layer under the assumption that no change takes place in LU condition irrespective of the length of simulation period. This assumption leads to erroneous conclusions about efficacy of management practices in those watersheds where land use changes (LUCs) (e.g. agriculture to urban, forest to agriculture etc.) occur during the simulation period. To overcome this limitation, we have developed a user-friendly, web-based tool named LUU Checker that helps create a composite LU layer by integrating multiple years of LU layers available in watersheds of interest. The results show that the use of composite LU layer for hydrologic response unit (HRU) delineation in 2474-km2 L’Anguile River Watershed in Arkansas was able to capture changed LU at subbasin level by using LU data available in the year 1999 and 2006, respectively. The web-based tool is applicable for large size watersheds and is accessible to multiple users from anywhere in the world. Keywords: Land use, Web-based tool, SWAT, LUU Checker.


2007 ◽  
Vol 50 (3) ◽  
pp. 901-910 ◽  
Author(s):  
X. Zhang ◽  
R. Srinivasan ◽  
F. Hao

Sign in / Sign up

Export Citation Format

Share Document