scholarly journals Prediction of erosion and sedimentation rates using SWAT (Soil and Water Assessment Tool) method in the Jenelata Sub Watershed

2021 ◽  
Vol 886 (1) ◽  
pp. 012097
Author(s):  
Wahyuni ◽  
Andang Suryana Soma ◽  
Usman Arsyad ◽  
Riska Sariyani ◽  
Baharuddin Mappangaja

Abstract Erosion and sedimentation are problems that often occur in watershed ecosystems. The SWAT model (Soil and Water Assessment Tool) can be used to determine the output of a watershed’s performance. Jenelata sub-watershed area is one of the largest sub-watersheds of the Jeneberang watershed with 22.800 ha. This study aims to determine the spatial distribution of the hydrologic response unit (HRU) and analyze the rate of erosion and sedimentation in the Jenelata sub-watershed. The results showed that most HRUs are in secondary dryland forests with 447 HRU (19.09%). The level of erosion in the very light category, namely 5.74 ton/ha/year (37.53%) and light 34.71 ton/ha/year (27.76%), was in the villages of Moncongloe, Tana Karaeng, Sicini, Paladindang, Towata, Parang Lampoa, Manuju, and Buakkang. Meanwhile, moderate erosion was 104.07 ton/ha/year (23.92%), high 289.65 ton/ha/year (9.59%), and very high 553.74 ton/ha/year (1.20%) located in the villages of Pattallikang, Mangempang, Bontomanai, Bissoloro, Rannaloe, Jenebatu, and Sapaya. The largest sedimentation is 133.18 ton/ha/year in sub-watershed17, located in Bissoloro and Rannaloe villages.

2020 ◽  
Vol 16 (1) ◽  
pp. 34
Author(s):  
Maryam Afifa ◽  
Afla Dina ◽  
Elvi Roza Syofyan ◽  
Wisafri -

Batang Arau is one of the rivers that flows in the city of Padang, the upstream part of the Batang Arau watershed starting from the Lubuk Paraku river which is in the northeast of Padang City, with a water catchment area of 2,504 hectares which is Dr. Muhammad Hatta, Nature Reserve Area Barisan I and Arau downstream. The Batang Arau watershed has decreased its primary forest area due to the large number of additional settlements. The increase in residential area resulted in the land that was previously not waterproof. The mainstay discharge always increases in the rainy season and decreases in the dry season. The mainstay discharge in the Batang Arau watershed is calculated using the Fj Mock method. The Batang Arau watershed also knows the mainstay discharge that occurred in 2010, 2012 and 2018 using the Soil and Water Assessment Tool (SWAT) model. The analysis was obtained from four processes, namely delineation of the watershed, the formation of the Hydrologic Response Unit (HRU), the formation of climatological data, and the simulation process. For the HRU analysis of the Batang Arau watershed, it was obtained 7 sub-watersheds, the dominant HRU, namely primary dryland forest, was 74.68%.


2020 ◽  
Vol 15 (2) ◽  
pp. 1
Author(s):  
Annisa Fitriana Definnas ◽  
Rozy Fairuzza Reyandal ◽  
Elvi Roza Syofyan ◽  
Wisafri -

Batang Kuranji is one of six rivers that flow in the city of Padang, and is the main source of water for residents of Padang City to meet the raw water which is then processed into clean water and the needs of Mt. Nago irrigation water. The increase in population causes the population to move to a higher area (green zone). Batang Kuranji watershed has experienced a reduction in the area of forest land due to changes in land use activities by the population movement. As a result, land that was not watertight at first became watertight, the mainstay discharge or expected discharge is always available, always increasing during the rainy season and decreasing during the dry season. This study was conducted to determine the extent of land use change in the Batang Kuranji watershed, also to determine the main discharge that occurred in 2009, 2011, and 2017 using the Soil and Water Assessment Tool (SWAT) model. The analysis consists of four processes, namely watershed delineation, formation of a Hydrologic Response Unit (HRU), formation of climatological data, and finally the simulation process. HRU analysis results obtained by Batang Kuranji watershed into 9 sub-watersheds, the dominant HRU is protection forest by 62%, soil type with depth (solum) level A and B, runoff coefficient of 0.3 and NS value obtained by 0.6. This shows that the SWAT model can predict the hydrological process in the upstream Batang Kuranji watershed. The most influential land use on surface runoff is land use for settlement.


2021 ◽  
Vol 31 (4) ◽  
pp. 696-710
Author(s):  
Liupeng Jiang ◽  
Jinghai Zhu ◽  
Wei Chen ◽  
Yuanman Hu ◽  
Jing Yao ◽  
...  

2021 ◽  
Vol 886 (1) ◽  
pp. 012103
Author(s):  
Andang Suryana Soma ◽  
Wahyuni ◽  
Musdalifah

Abstract The increase in population will encourage the community to transfer the function of agricultural land in the Malino sub-watershed. Land use dramatically affects the level of erosion and sedimentation. The use of SWAT models can identify, assess, and evaluate the extent of a watershed’s problems. This study aims to determine the spatial distribution of HRU and analyze the rate of erosion and sedimentation in the Malino sub-watershed. The results showed that the most HRU is found in secondary dryland forests, as much as 624 HRU (32.21%). The level of erosion rate of the category is very light with an erosion value of 5.21 tons/ha/year, light 31.19 tons/ha/year, moderate 104.91 tons/ha/year, weight 267.10 tons/ha/year, and hefty 616.74 tons/ha/year. The most significant sedimentation rate was found in sub-watershed 18 of 71.97 tons/ha/year and subwatershed 10 of 13.31 tons/ha/year.


2019 ◽  
Vol 11 (4) ◽  
pp. 992-1000
Author(s):  
Jirawat Supakosol ◽  
Kowit Boonrawd

Abstract The purpose of this study is to investigate the future runoff into the Nong Han Lake under the effects of climate change. The hydrological model Soil and Water Assessment Tool (SWAT) has been selected for this study. The calibration and validation were performed by comparing the simulated and observed runoff from gauging station KH90 for the period 2001–2003 and 2004–2005, respectively. Future climate projections were generated by Providing Regional Climates for Impacts Studies (PRECIS) under the A2 and B2 scenarios. The SWAT model yielded good results in comparison to the baseline; moreover, the results of the PRECIS model showed that both precipitations and temperatures increased. Consequently, the amount of runoff calculated by SWAT under the A2 and B2 scenarios was higher than that for the baseline. In addition, the amount of runoff calculated considering the A2 scenario was higher than that considering the B2 scenario, due to higher average annual precipitations in the former case. The methodology and results of this study constitute key information for stakeholders, especially for the development of effective water management systems in the lake, such as designing a rule curve to cope with any future incidents.


2013 ◽  
Vol 7 (3) ◽  
pp. 252-257

The subject of this article is the estimation of quantitative (hydrological) and qualitative parameters in the catchment of Ronnea (1800 Km2, located in south western Sweden) through the application of the Soil and Water Assessment Tool (SWAT). SWAT is a river basin model that was developed for the U.S.D.A. Agricultural Research Service, by the Blackland Research Center in Texas. The SWAT model is a widely known tool that has been used in several cases world-wide. It has the ability to predict the impact of land management practices on water, sediment and agricultural chemical yield in large complex watersheds. The present work investigates certain capabilities of the SWAT model which have not identified up to now. More in specific, the main targets of the work carried out are the following: • Identification of the existing hydrological and qualitative conditions • Preparation - Processing of data required to be used as input data of the model • Hydrological calibration - validation of the model, in 7 subbasins of the Catchment of Ronnea • Estimation and evaluation of the simulated qualitative parameters of the model All available data were offered by the relevant Institutes of Sweden, in the framework of the European program EUROHARP. The existing conditions in the catchment of Ronnea, are described in detail including topography, land uses, soil types, pollution sources, agricultural management practices, precipitation, temperature, wind speed, humidity, solar radiation as well as observed discharges and Nitrogen and Phosphorus substances concentrations. Most of the above data were used as input data for the application of SWAT model. Adequate methods were also used to complete missing values in time series and estimate additional parameters (such as soil parameters) required by the model. Hydrological calibration and validation took place for each outlet of the 7 subbasins of Ronnea catchment in an annual, monthly and daily step. The calibration was achieved by estimating parameters related to ground water movement and evaluating convergence between simulated and observed discharges by using mainly the Nash & Sutcliffe coefficient (NTD). Through the sensitivity analysis, main parameters of the hydrological simulation, were detected. According to the outputs of the SWAT model, the water balance of Ronnea catchment was also estimated. Hydrological calibration and validation is generally considered sufficient in an annual and monthly step. Hydrological calibration – validation in daily step, generally does not lead to high values of the NTD indicator. However, when compared to results obtained by the use of SWAT in Greece, a relatively high value of NTD is achieved in one subbasin. Finally, a comparison between the simulated and observed concentrations of total Phosphorus and Nitrogen was carried out.


Heliyon ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. e02106 ◽  
Author(s):  
J. Daramola ◽  
T.M. Ekhwan ◽  
J. Mokhtar ◽  
K.C. Lam ◽  
G.A. Adeogun

2020 ◽  
Author(s):  
Paul D. Wagner ◽  
Katrin Bieger ◽  
Jeffrey G. Arnold ◽  
Nicola Fohrer

<p>The hydrology of rural lowland catchments in Northern Germany is characterized by near-surface groundwater tables and extensive tile drainage. Previous research has shown that representing these characteristics with the hydrologic model SWAT (Soil and Water Assessment Tool) required an improvement of groundwater processes, which has been achieved by dividing the shallow aquifer into a fast and a slow shallow aquifer. The latest version of the Soil and Water Assessment Tool (SWAT+) features several improvements compared to previous versions of the model, e.g. the definition of landscape units that allow for a better representation of spatio-temporal dynamics. To evaluate the new model capabilities for lowland catchments, we assess the performance of SWAT+ in comparison to previous SWAT applications in the Kielstau Catchment in Northern Germany. The Kielstau Catchment is about 50 km² large, is dominated by agricultural land use, and has been thoroughly monitored since 2005. In particular, we explore the capabilities of SWAT+ in terms of watershed configuration and simulation of landscape processes by comparing two model setups. The first setup is comparable to previous SWAT models for the catchment, i.e. yields from hydrologic response units are summed up at subbasin level and added directly to the stream. In the second SWAT+ model, subbasins are divided into upland areas and floodplains and runoff is routed across the landscape before it reaches the streams. Model performance is assessed with regard to measured stream flow at the outlet of the catchment. Results from the new SWAT+ model confirm that two groundwater layers are necessary to represent stream flow in the catchment. The representation of routing processes from uplands to floodplains in the model further improved the simulation of stream flow. The outcomes of this study are expected to contribute to a better understanding and model representation of lowland hydrology.</p>


2008 ◽  
Vol 348 (3-4) ◽  
pp. 279-291 ◽  
Author(s):  
Zachary M. Easton ◽  
Daniel R. Fuka ◽  
M. Todd Walter ◽  
Dillon M. Cowan ◽  
Elliot M. Schneiderman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document