Effect of Different Planting Density on Cotton Canopy Structure, Canopy Photosynthesis and Yield Formation

2006 ◽  
Author(s):  
Jun Zhang ◽  
Yi-Ming Wang ◽  
Qiao-Xue Dong ◽  
Jia-Lin Hou
2004 ◽  
Vol 28 (2) ◽  
pp. 164-171 ◽  
Author(s):  
ZHANG Wang-Feng ◽  
WANG Zhen-Lin ◽  
YU Song-Lie ◽  
LI Shao-Kun ◽  
FANG Jian ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuanhong Zhang ◽  
Zonggui Xu ◽  
Jun Li ◽  
Rui Wang

Increasing planting density is an effective strategy for improving maize productivity, but grain yield does not increase linearly with the increase in plant density, especially in semiarid environments. However, how planting density regulates the integrated utilization of key input resources (i.e., radiation, water, and nutrients) to affect maize production is not clear. To evaluate the effects of planting density and cultivar on maize canopy structure, photosynthetic characteristics, yield, and resource use efficiency, we conducted a successive field experiment from 2013 to 2018 in Heyang County (Shaanxi Province, China) using three different cultivars [i.e., Yuyu22 (C1), Zhengdan958 (C2), and Xianyu335 (C3)] at four planting densities [i.e., 52,500 (D1), 67,500 (D2), 82,500 (D3), and 97,500 (D4) plants ha–1]. Increasing planting density significantly increased the leaf area index (LAI) and the amount of intercepted photosynthetically active radiation (IPAR), thereby promoting plant growth and crop productivity. However, increased planting density reduced plant photosynthetic capacity [net photosynthetic rate (Pn)], stomatal conductance (Gc), and leaf chlorophyll content. These alterations constitute key mechanisms underlying the decline in crop productivity and yield stability at high planting density. Although improved planting density increased IPAR, it did not promote higher resource use efficiency. Compared with the D1 treatment, the grain yield, precipitation use efficiency (PUE), radiation use efficiency (RUE), and nitrogen use efficiency (NUE) increased by 5.6–12.5%, 2.8–7.1%, and −2.1 to 1.6% in D2, D3, and D4 treatments, respectively. These showed that pursuing too high planting density is not a desirable strategy in the rainfed farming system of semiarid environments. In addition, density-tolerant cultivars (C2 and C3) showed better canopy structure and photosynthetic capacity and recorded higher yield stability and resource use efficiency. Together, these results suggest that growing density-tolerant cultivars at moderate planting density could serve as a promising approach for stabilizing grain yield and realizing the sustainable development of agriculture in semiarid regions.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 555 ◽  
Author(s):  
Chanchan Zhou ◽  
Yuancai Huang ◽  
Baoyan Jia ◽  
Shu Wang ◽  
Fugen Dou ◽  
...  

Nitrogen fertilization and planting density are two key factors that can interactively affect the grain yield of rice. Three different types of rice cultivars—inbred Shendao 47, inbred Shendao 505, and hybrid Jingyou 586—were applied to investigate the effects of the nitrogen (N) rate and planting density (D) on the aboveground biomass, harvest index, leaf photosynthetic features, grain yield, and yield components using a split-split-plot design at two sites over two continuous years. The main plots were assigned to four nitrogen fertilizer rates: 0 (N0), 140 (N1), 180 (N2), and 220 (N3) kg ha−1 N; the subplots were assigned to three planting densities: 25 × 104 (D1), 16.7 × 104 (D2), and 12.5 × 104 (D3) hills ha-1, and the sub-subplots were assigned to three rice cultivars. The results showed that the grain yield had a significantly positive correlation with the stomatal conductance (Gs), net photosynthesis rate (Pn), transpiration rate (Tr), chlorophyll content (SPAD value), leaf area index (LAI), panicles per unit area, and spikelets per panicle. The N rate and planting density had significant interaction effects on grain yield, and the maximum values of Shendao 47, Shendao 505, and Jingyou 586 appeared in N3D2, N2D1, and N3D3, respectively. The higher grain yield of midsized panicle Shendao 47 was mostly ascribed to both panicles per unit area and spikelets per panicle. More panicles per unit area and spikelets per panicle primarily contributed to a larger sink capacity of small-sized panicle rice Shendao 505 and large-sized panicle rice Jingyou 586. We found that the treatments N3D2, N2D1, and N3D3 could optimize the contradiction between yield formation factors for Shendao 47, Shendao 505, and Jingyou 586, respectively. Across years and sites, the regression analysis indicated that the combinations of nitrogen fertilization of 195.6 kg ha−1 with a planting density of 22 × 104 hills ha−1, 182.5 kg ha−1 with 25 × 104 hills ha−1, and 220 kg ha−1 with 13.1 × 104 hills ha−1 are recommended for medium-, small-, and large-sized panicle rice cultivars, respectively.


2008 ◽  
Vol 13 (1-2) ◽  
pp. 170 ◽  
Author(s):  
P. MÄKELÄ ◽  
S. MUURINEN ◽  
P. PELTONEN-SAINIO

The Finnish growing season is particularly short, with an intensive growth period, unfavourable rainfall distribution and frequently occurring fluctuations in climate that affect crop growth and yield formation. A three-year study was conducted in the field to determine the contribution of alterations in canopy structure, tillering and stem elongation among dwarf (D), semidwarf (SD) and tall (T) oat (Avena sativa L.) lines to yield formation. Yield components, leaf characteristics and straw traits were measured from six oat lines (D lines Pal and Grane, SD lines Hja 76416 and Salo, and T lines Veli and Jalostettu maatiainen) separately on the main shoot and tillers. Results indicated that long leaf area duration and high leaf area index were associated with increased grain yield probably due to more persistent and active assimilation. Also, higher number of leaves increased the grain yield. Higher peduncle, straw and node weights associating with increased grain yield may result from more abundant assimilate reserves; however, the longer the straw and peduncle, the lower the grain yield, which may result from increased lodging of SD and T lines. The traits contributing most to the grain yield varied greatly from year to year. It is concluded that no single dominant trait determined grain yield, since yield is a product of several different traits. SD lines seemed to be most promising for further breeding programs on the basis of their growth pattern and yielding ability.;


2018 ◽  
Vol 87 (3) ◽  
pp. 259-260
Author(s):  
Keita Mizushima ◽  
Issei Kanai ◽  
Shigenori Morita

Author(s):  
S. C. Huang ◽  
J. Y. Yeh ◽  
C. T. Chen ◽  
J. C. Chen

Forest canopy structure is composed by the various species. Sun light is a main factor to affect the crown structures after tree competition. However, thinning operation is an appropriate way to control canopy density, which can adjust the competition conditions in the different crown structures. Recently, Airborne Light Detection and Ranging (LiDAR), has been established as a standard technology for high precision three dimensional forest data acquisition; it could get stand characteristics with three-dimensional information that had develop potential for the structure characteristics of forest canopy. The 65 years old, different planting density of <i>Cryptomeria japonica</i> experiment area was selected for this study in Nanytou, Taiwan. Use the LiDAR image to estimate LiDAR characteristic values by constructed CHM, voxel-based LiDAR, mu0ltiple echoes, and assess the accuracy of stand characteristics with intensity values and field data. The competition index was calculated with field data, and estimate competition index of LiDAR via multiple linear regression. The results showed that the highest accuracy with stand characteristics was stand high which estimate by LiDAR, its average accuracy of 91.03%. LiDAR raster grid size was 20 m × 20 m for the correlation was the best, however, the higher canopy density will reduce the accuracy of the LiDAR characteristic values to estimate the stand characteristics. The significantly affect canopy thickness and the degree of competition in different planting distances.


Sign in / Sign up

Export Citation Format

Share Document