Engine Performance and Emissions Characteristics When Using Biodiesel in Diesel Engines

2007 ◽  
Author(s):  
Justin P Stergar ◽  
John P Chastain
Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1612
Author(s):  
Federico Millo ◽  
Andrea Piano ◽  
Benedetta Peiretti Paradisi ◽  
Mario Rocco Marzano ◽  
Andrea Bianco ◽  
...  

In this paper, an integrated and automated methodology for the coupling between 1D- and 3D-CFD simulation codes is presented, which has been developed to support the design and calibration of new diesel engines. The aim of the proposed methodology is to couple 1D engine models, which may be available in the early stage engine development phases, with 3D predictive combustion simulations, in order to obtain reliable estimates of engine performance and emissions for newly designed automotive diesel engines. The coupling procedure features simulations performed in 1D-CFD by means of GT-SUITE and in 3D-CFD by means of Converge, executed within a specifically designed calculation methodology. An assessment of the coupling procedure has been performed by comparing its results with experimental data acquired on an automotive diesel engine, considering different working points, including both part load and full load conditions. Different multiple injection schedules have been evaluated for part-load operation, including pre and post injections. The proposed methodology, featuring detailed 3D chemistry modeling, was proven to be capable assessing pollutant formation properly, specifically to estimate NOx concentrations. Soot formation trends were also well-matched for most of the explored working points. The proposed procedure can therefore be considered as a suitable methodology to support the design and calibration of new diesel engines, due to its ability to provide reliable engine performance and emissions estimations from the early stage of a new engine development.


2019 ◽  
Vol 255 ◽  
pp. 113260 ◽  
Author(s):  
Thuy Chu Van ◽  
Ali Zare ◽  
Mohammad Jafari ◽  
Timothy A. Bodisco ◽  
Nicholas Surawski ◽  
...  

Author(s):  
Federico Millo ◽  
Andrea Piano ◽  
Benedetta Peiretti Paradisi ◽  
Mario Rocco Marzano ◽  
Andrea Bianco ◽  
...  

In this paper an integrated methodology for the coupling between 1D- and 3D-CFD simulation codes is presented, which has been developed to support the design and calibration of new diesel engines. The aim of the proposed methodology is to couple 1D engine models, which may be available in the early-stage engine development phases, with 3D predictive combustion simulations, in order to obtain reliable estimates of engine performance and emissions for newly designed automotive diesel engines. The coupling procedure features simulations performed in 1D-CFD by means of GT-SUITE and in 3D-CFD by means of Converge, executed within a specifically designed calculation methodology. An assessment of the coupling procedure has been performed by comparing its results with experimental data acquired on an automotive Diesel engine, considering different working points including both part load and full load conditions. Different multiple injection schedules have been evaluated for part-load operation, including pre and post injections. The proposed methodology, featuring detailed 3D chemistry modeling, was proven to be capable to properly assess pollutant formation, specifically to estimate NOx concentrations. Soot formation trend was also well-matched for most of the explored working points. The proposed procedure can therefore be considered as a suitable methodology to support the design and calibration of new Diesel engines, thanks to its ability to provide reliable engine performance and emissions estimations from the early-stage of a new engine development.


Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121097
Author(s):  
M. Mourad ◽  
Khaled R.M. Mahmoud ◽  
El-Sadek H. NourEldeen

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ali Hasan ◽  
Oskar J. Haidn

AbstractThe Paris Agreement has highlighted the need in reducing carbon emissions. Attempts in using lower carbon fuels such as Propane gas have seen limited success, mainly due to liquid petroleum gas tanks structural/size limitations. A compromised solution is presented, by combusting Jet A fuel with a small fraction of Propane gas. Propane gas with its relatively faster overall igniting time, expedites the combustion process. Computational fluid dynamics software was used to demonstrate this solution, with results validated against physical engine data. Jet A fuel was combusted with different Propane gas dosing fractions. Results demonstrated that depending on specific propane gas dosing fractions emission reductions in ppm are; NOx from 84 to 41, CO2 from less than 18,372 to less than 15,865, escaping unburned fuels dropped from 11.4 (just Jet A) to 6.26e-2 (with a 0.2 fraction of Propane gas). Soot and CO increased, this is due to current combustion chamber air mixing design.


Sign in / Sign up

Export Citation Format

Share Document