Impact of Land Application Method on Ammonia Loss from Hog Lagoon Effluent

2009 ◽  
Vol 25 (6) ◽  
pp. 963-973
Author(s):  
S. B. Shah ◽  
B. K. Balla ◽  
G. L. Grabow ◽  
P. W. Westerman ◽  
D. E. Bailey
2013 ◽  
Author(s):  
John E Gilley ◽  
S L Bartelt-Hunt ◽  
X Li ◽  
D B Marx ◽  
D D Snow ◽  
...  

2019 ◽  
Vol 11 (21) ◽  
pp. 6168 ◽  
Author(s):  
John P. Chastain

Ammonia loss resulting from land application of liquid animal manure varies depending on the composition of the manure and the method used to apply manure to cropland. High levels of ammonia volatilization result in an economic loss to the farmer based on the value of the nitrogen and have also been shown to be a source of air pollution. Using irrigation as a method of applying liquid manure to cropland has generally been accepted as a method that increases the volatilization of ammonia. However, only three studies available in the literature measured the amount of ammonia lost during the irrigation process. Only one of the three studies concluded that ammonia loss during irrigation was significant. A pooled statistical and uncertainty analysis of the 55 available observations was performed to determine if ammonia loss occurred during irrigation of animal manure. Data on the total solids content of the manure were also included as an indicator of evaporation losses. Volatilization losses during irrigation were not found to be statistically significant, and evaporation losses were small, 2.4%, and agreed with previous studies on irrigation performance. Furthermore, the range of ammonia loss reported in previous studies was determined to be within the errors associated with the measurement of total ammoniacal nitrogen concentrations and the calculation of per cent differences.


2016 ◽  
Vol 53 ◽  
pp. 12-15 ◽  
Author(s):  
Mitchell D. Richmond ◽  
Robert C. Pearce ◽  
William A. Bailey
Keyword(s):  

2003 ◽  
Vol 46 ◽  
pp. 12-16 ◽  
Author(s):  
L. R. Fisher ◽  
W. D. Smith ◽  
J. W. Wilcut

2019 ◽  
Vol 2 (2) ◽  
pp. 21
Author(s):  
Lindawati Lindawati

Reduction of food rations and shortages is one of the impacts of the increasing human population. Food sector industries then try to cope with the fast growing number of customers. Agribusiness sector gains its popularity in these recent years, including pig farm. The increase trend of animal farming industry is likely to bring increasing pollution problem unless effective treatment methods are used. The main problems related to the pig farm include odor nuisance and pig manure disposal. The existing land application of piggery wastewater is the traditional way to discharge the wastewater. This may yield in land and water contamination, due to the accumulation of unused nutrients by crop plant. A case study of a large commercial pig farm from Australia is proposed to apply in smaller scale in Indonesia. Operational strategies for the small-scale SBR (Sequencing Batch Reactor) treating piggery effluent were developed based on lab-scale experiments. Due to SBR characteristics, which are money-saving and space-saving, it is very suitable to be applied in urban area. An economic evaluation was made of various process options. The cost estimation showed that SBR is a cost effective process, allowing operational batches to be adjusted to reduce unnecessary aeration cost. A reduction in the aeration cost was achieved by shortening the batch time from 24-h to 8-h. A comparison of three different SBR options showed that smaller size reactors could be more flexible and cost effective when compared with the larger ones.


Sign in / Sign up

Export Citation Format

Share Document