Discrete Element Analysis of Micro-mechanical Behaviour of a Grain Assembly in Constant Load Direct Shear

2001 ◽  
Author(s):  
Dr Eiichiro Sakaguchi ◽  
Yoshiyuki Kawase ◽  
Shotaro Kawakami
2020 ◽  
Vol 10 (11) ◽  
pp. 3693
Author(s):  
Linxian Gong ◽  
Lei Nie ◽  
Yan Xu

Soil reinforcement with natural or synthetic fibers enhances its mechanical behavior in various applications. Fiber-reinforced sands (FRS) can be relatively anisotropic because of the fiber self-weight and the compaction technique. However, the microscopic mechanisms underlying the anisotropy are still poorly understood. This study used a discrete element approach to analyze the microscopic mechanisms underlying the strength anisotropy of FRS due to fiber orientation. Analysis of contact networks revealed that the optimum fiber orientation angle is perpendicular to the main direction of strong contact force in direct shear testing. These fibers produced the largest increase in shear zone thickness, normal force around the fiber body, effective contact area, tensile force along fibers, and energy storage/dissipation. This study is valuable for further understanding of the mechanical behaviors of FRS.


2021 ◽  
Vol 9 (3) ◽  
pp. 348
Author(s):  
Xue Long ◽  
Lu Liu ◽  
Shewen Liu ◽  
Shunying Ji

In cold regions, ice pressure poses a serious threat to the safe operation of ship hulls and fixed offshore platforms. In this study, a discrete element method (DEM) with bonded particles was adapted to simulate the generation and distribution of local ice pressures during the interaction between level ice and vertical structures. The strength and failure mode of simulated sea ice under uniaxial compression were consistent with the experimental results, which verifies the accuracy of the discrete element parameters. The crushing process of sea ice acting on the vertical structure simulated by the DEM was compared with the field test. The distribution of ice pressure on the contact surface was calculated, and it was found that the local ice pressure was much greater than the global ice pressure. The high-pressure zones in sea ice are mainly caused by its simultaneous destruction, and these zones are primarily distributed near the midline of the contact area of sea ice and the structure. The contact area and loading rate are the two main factors affecting the high-pressure zones. The maximum local and global ice pressures decrease with an increase in the contact area. The influence of the loading rate on the local ice pressure is caused by the change in the sea ice failure mode. When the loading rate is low, ductile failure of sea ice occurs, and the ice pressure increases with the increase in the loading rate. When the loading rate is high, brittle failure of sea ice occurs, and the ice pressure decreases with an increase in the loading rate. This DEM study of sea ice can reasonably predict the distribution of high-pressure zones on marine structures and provide a reference for the anti-ice performance design of marine structures.


2021 ◽  
Author(s):  
Antonio Pol ◽  
Fabio Gabrieli ◽  
Lorenzo Brezzi

AbstractIn this work, the mechanical response of a steel wire mesh panel against a punching load is studied starting from laboratory test conditions and extending the results to field applications. Wire meshes anchored with bolts and steel plates are extensively used in rockfall protection and slope stabilization. Their performances are evaluated through laboratory tests, but the mechanical constraints, the geometry and the loading conditions may strongly differ from the in situ conditions leading to incorrect estimations of the strength of the mesh. In this work, the discrete element method is used to simulate a wire mesh. After validation of the numerical mesh model against experimental data, the punching behaviour of an anchored mesh panel is investigated in order to obtain a more realistic characterization of the mesh mechanical response in field conditions. The dimension of the punching element, its position, the anchor plate size and the anchor spacing are varied, providing analytical relationships able to predict the panel response in different loading conditions. Furthermore, the mesh panel aspect ratio is analysed showing the existence of an optimal value. The results of this study can provide useful information to practitioners for designing secured drapery systems, as well as for the assessment of their safety conditions.


2013 ◽  
Vol 774-776 ◽  
pp. 1155-1159 ◽  
Author(s):  
Xiao Cong He

Friction stir welding (FSW) is a solid-state welding process where no gross melting of the material being welded takes place. Numerical modelling of the FSW process can provide realistic prediction of the thermo-mechanical behaviour of the process. Latest literature relating to finite element analysis (FEA) of thermo-mechanical behaviour of FSW process is reviewed in this paper. The recent development in thermo-mechanical modelling of FSW process is described with particular reference to two major factors that influence the performance of FSW joints: material flow and temperature distribution. The main thermo-mechanical modelling used in FSW process are discussed and illustrated with brief case studies from the literature.


Meccanica ◽  
2017 ◽  
Vol 53 (7) ◽  
pp. 1571-1589 ◽  
Author(s):  
Balázs Rigó ◽  
Katalin Bagi

Sign in / Sign up

Export Citation Format

Share Document