Impact of Load and Inflation Pressure on Traffic-Induced Soil Compaction for Two Types of Flotation Tires

2017 ◽  
Vol 33 (4) ◽  
pp. 499-507
Author(s):  
Ahmad Mohsenimanesh ◽  
Claude Laguë

Abstract. An Automatic Air Inflation-Deflation (AAID) control unit was evaluated on a manure tanker equipped with Alliance model 390 30.5LR32 steel belted radial-ply and Michelin 650/75R32 172A8/172B TL MEGAXBIB radial-ply flotation tires. The objective was to validate the effectiveness of the AAID control unit from an engineering perspective and its benefits for field agricultural operations. The contact patch was characterized in terms of rut depth and width, and tire contact length. Soil cone index was used as an indicator of soil compaction caused by the weight of the manure tanker. Cone index and rut depth at the centerline and edge of both the Alliance and the Michelin tires were affected by tire inflation pressure and load. As inflation pressure or load increased, the cone penetration resistance in the contact patch increased, indicating an increase in soil compaction. The adjusted tire inflation pressure for field operation using the AAID control unit reduced the rut depth at a lug imprint at the tire centerline, at a high load of 68 kN per tire, by 18.4% and 15.6% for the Michelin and Alliance tires, respectively, and by 19.1% and 12.0% at a low load of 44 kN per tire for the Michelin and Alliance tires respectively. Keywords: Automatic air inflation deflation, Cone index, Contact patch, Flotation tire, Manure tanker, Rut depth, Rut width, Soil compaction management.

2015 ◽  
Vol 13 (2) ◽  
pp. e0211 ◽  
Author(s):  
Parviz Tomaraee ◽  
Aref Mardani ◽  
Arash Mohebbi ◽  
Hamid Taghavifar

<p>Qualitative and quantitative analysis of contact patch length-rolling resistance, contact patch width-rolling resistance and tire deflection-rolling resistance at different wheel load and inflation pressure levels is presented. The experiments were planned in a randomized block design and were conducted in the controlled conditions provided by a soil bin environment utilizing a well-equipped single wheel-tester of Urmia University, Iran. The image processing technique was used for determination of the contact patch length and contact patch width. Analysis of covariance was used to evaluate the correlations. The highest values of contact length and width and tire deflection occurred at the highest wheel load and lowest tire inflation pressure. Contact patch width is a polynomial (order 2) function of wheel load while there is a linear relationship between tire contact length and wheel load as well as between tire deflection and wheel load. Correlations were developed for the evaluation of contact patch length-rolling resistance, contact patch width-rolling resistance and tire deflection-rolling resistance. It is concluded that the variables studied have a significant effect on rolling resistance.</p>


Revista CERES ◽  
2013 ◽  
Vol 60 (5) ◽  
pp. 715-721 ◽  
Author(s):  
Walter Francisco Molina Jr ◽  
Sônia Maria Stefano Piedade ◽  
Juarez Rennó Amaral

The soil penetration resistance has been used to represent the compaction situation and several authors have attempted to relate the cone index (CI) with the bulk density. The importance of using the CI as source of information for decisions in agricultural activities, livestock and forestry manner, has become increasingly larger, which requires more knowledge about the penetrometers and penetrographs behavior. This study aimed to verify, in controlled laboratory conditions, the influence of soil water content and cone penetration rate to obtain the cone index, when density variation occurs. The soil was compacted by compression through a universal press cylinder which was specially designed to produce the test specimens. Bulk densities were determined from samples taken from the test specimens and their moisture content. The CI values obtained were between 0.258 and 4.776 MPa, measured in 4 moistures and 7 soil densities with 3 penetration speeds. It was concluded that the determination of IC is strongly influenced by the soil moisture but the penetration speed variation, used in this study, was not sufficient to influence the IC determination. However, the decrease in soil water content may increase the sensitiveness to detect a variation in bulk density by the use of cone index.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Valentin Ivanov

This paper discusses the application of noncontact methods to analyze the tire-surface contact interaction. This approach uses the tire test bench with the set of contact patch monitoring based on image processing procedures. The first part of this paper presents the results of experimental estimation of the contact patch area depending on the normal wheel load and inflation pressure for different car tires. The data were obtained for test bench conditions on the basis of the visual processing of tread footprint. Further, the contact length in the cohesion area during wheel rolling for single points on the tire profile has been chosen as a benchmark criterion. This paper has analyzed the influence of the wheel normal load and tire inflation pressure on the contact length with small rolling velocities. The results of the investigations are given for winter and racing tires with different grades of wear.


2021 ◽  
Vol 53 (1) ◽  
pp. 109-117
Author(s):  
Enrique Ernesto Contessotto ◽  
Guido Fernando Botta ◽  
Marcos Esteban Angelini ◽  
Fernando Bienvenido ◽  
David Rivero ◽  
...  

The present work shows the effects of the different agricultural wheels traffic on the soil physical properties on a Typic Argiudoll soil worked under no-tillage cropping system. Soil compaction produced by traffic was quantified through these parameters: a) cone index, b) rut depth and c) soil water content at the traffic moment. Grain chaser, sprayer, harvester combine and tractor equipped with commonly used wheels in the study area were tested. The main results obtained showed that the tyres with the highest inflation pressure and tyre ground pressures produced the highest values of cone index and rut depth. Typic Argiudoll soil worked under continuous no-tillage cropping system is not able to constrain topsoil and subsoil compaction when it is wheeled by tyre with ground pressures greater than 77.6 kPa. Highlights Soil compaction causes a reduction in root growth and yield in many crops. Soil under a no-tillage system does not limit topsoil and subsoil compaction when wheeled by tyres with ground pressures greater than 77.6 kPa When the machinery load increases on soils with high bearing capacity (soils under a long-term no-tillage system), the subsoil compaction problems increase.


Author(s):  
Sandra L. Landsburg ◽  
Karen R. Cannon ◽  
Nancy M. Finlayson

A study was initiated in 1988 to evaluate the effects of pipeline construction on soil compaction in the province of Alberta. Cone penetration resistance (soil strength) of soils was monitored to a depth of 31.5 cm at 14 study areas. Soil strength measurements were taken from right-of-way locations as well as from an adjacent undisturbed control. Soil strength information from the 14 study areas suggests that pipeline construction procedures can cause changes in soil strength on pipeline rights-of-way. Decreases in soil strength on the RoW compared to adjacent controls are more common than increases. These differences in soil strength appear to be short lived. In the majority of cases most differences, both increases and decreases, had disappeared one year after construction.


Author(s):  
Junshuai Liang ◽  
Ning Li ◽  
Jingyu Zhai ◽  
BaoGang Wen ◽  
Qingkai Han ◽  
...  

In this study, a layering method of carburized ring is presented. A finite element (FE) model for analyzing bearing stiffness characteristics is established considering the residual stress in the carburized layer. The residual stress in the carburized layer of a double-row conical roller bearing is tested and the influence of the distribution of residual stress in carburized layer on the bearing stiffness is investigated. Results show that the residual stress in the carburized layer increases the contact stiffness of the bearing by 5% in the low-load zone and 3% in the high-load zone. The radial stiffness of the bearing is increased by 5% in the low-load zone and 3% in the high-load zone. The axial stiffness is increased by 6%, and the angular stiffness increased by 4%. The larger the thickness of the carburized layer, the greater the residual compressive stress in the carburized layer, the deeper the position of the maximum residual stresses in the carburized layer will lead to the greater stiffness of the bearing.


2015 ◽  
Vol 45 (8) ◽  
pp. 998-1005 ◽  
Author(s):  
Daniel P. Soto ◽  
Pablo J. Donoso ◽  
Christian Salas ◽  
Klaus J. Puettmann

We evaluated effects of topsoil scarification by heavy machinery on growth of two valuable, shade-intolerant tree species — Nothofagus dombeyi (Mirb.) Oerst. (evergreen and considered to be very plastic to different soil fertility levels) and Nothofagus alpina (Poepp. & Endl.) Oerst. (deciduous and considered to be sensitive to soil fertility) — seedlings that were underplanted in Nothofagus old-growth forests, which were subjected to shelterwood cuttings without the final cut in the Chilean Andes. We compared tree basal diameter growth as it responds to light availability and soil compaction (as measured by resistance to penetration) by fitting a growth model based on the Michaelis–Menten equation. Predicted growth of N. dombeyi was greater than N. alpina in high and low light levels; however, there were no significant differences between the species. Both species showed significant differences at high levels of penetration resistance (>2000 kPa). Differences for N. dombeyi occurred above ∼40% in total light, and differences occurred for N. alpina above ∼20% in total light. However, they were not different when compared at low and intermediate levels of penetration resistance. The results suggest that partial shelterwood cuts may provide adequate light levels to achieve appropriate growth of underplanted Nothofagus seedlings. However, if regeneration of N. alpina is desired, scarification of topsoil needs to be implemented with more caution in canopy openings, as traffic and soil removal by heavy machinery can have detrimental effects on growth of this species and other species that are more sensitive to soil compaction.


1992 ◽  
Vol 118 (8) ◽  
pp. 1200-1215 ◽  
Author(s):  
Wayne A. Charlie ◽  
Mutabihirwa F. J. Rwebyogo ◽  
Donald O. Doehring

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 113
Author(s):  
Marian Schönauer ◽  
Stephan Hoffmann ◽  
Joachim Maack ◽  
Martin Jansen ◽  
Dirk Jaeger

Timber harvesting operations using heavy forest machinery frequently results in severe soil compaction and displacement, threatening sustainable forest management. An accurate prediction of trafficability, considering actual operating conditions, minimizes these impacts and can be facilitated by various predictive tools. Within this study, we validated the accuracy of four terramechanical parameters, including Cone Index (MPa, Penetrologger), penetration depth (cm, Penetrologger), cone penetration (cm blow−1, dual-mass dynamic cone penetrometer) and shear strength (kPa, vane meter), and additionally two cartographic indices (topographic wetness index and depth-to-water). Measurements applying the four terramechanical approaches were performed at 47 transects along newly assigned machine operating trails in two broadleaved dominated mixed stands. After the CTL thinning operation was completed, measurement results and cartographic indices were correlated against rut depth. Under the rather dry soil conditions (29 ± 9 vol%), total rut depth ranged between 2.2 and 11.6 cm, and was clearly predicted by rut depth after a single pass of the harvester, which was used for further validations. The results indicated the easy-to-measure penetration depth as the most accurate approach to predict rut depth, considering coefficients of correlation (rP = 0.44). Moreover, cone penetration (rP = 0.34) provided reliable results. Surprisingly, no response between rut depth and Cone Index was observed, although it is commonly used to assess trafficability. The relatively low moisture conditions probably inhibited a correlation between rutting and moisture content. Consistently, cartographic indices could not be used to predict rutting. Rut depth after the harvester pass was a reliable predictor for total rut depth after 2–5 passes (rP = 0.50). Rarely used parameters, such as cone penetration or shear strength, outcompeted the highly reputed Cone Index, emphasizing further investigations of applied tools.


Sign in / Sign up

Export Citation Format

Share Document