<i>No-tillage tine furrow opener performance: soil-tool-residue interactions, tool geometry and settings</i>

Author(s):  
Kojo Atta Aikins ◽  
Diogenes L. Antille ◽  
Troy A. Jensen ◽  
James B. Barr ◽  
Mustafa Ucgul ◽  
...  
Soil Research ◽  
2020 ◽  
Vol 58 (7) ◽  
pp. 603
Author(s):  
Kojo Atta Aikins ◽  
James B. Barr ◽  
Mustafa Ucgul ◽  
Troy A. Jensen ◽  
Diogenes L. Antille ◽  
...  

The primary features of an effective and efficient furrow opener include controlled soil disturbance and low draught and vertical force requirements. When integrated in a no-tillage seeding system, furrow openers should also have the ability to assist, and not hinder, the functions of seeding system components – such as maintaining adequate surface residue distribution, accurate and uniform placement of seeds and fertiliser, and regular inter-plant spacing. This review highlights how these goals are affected by opener type, geometry and settings, and soil and residue conditions. Typically, tine openers cause greater soil disturbance than disc openers whereas disc openers are likely to cause residue hairpinning. Winged tine openers reduce residue interference with seed placement and support greater lateral seed spread. Inverted-T openers can achieve subsurface soil shattering, which helps conserve moisture and provides good seed–soil contact. A tine opener with concave cutting edge reduces soil disturbance relative to straight and convex cutting edges. Increasing rake angle, tine width and operating depth increase degree of soil disturbance and draught requirement. Increasing forward speed reduces residue interference with sowing but might decrease the accuracy and uniformity of depth and separation of seed and fertiliser placement. Relative to common openers, bentleg openers have lower draught and penetration force requirements while combining minimal lateral soil throw with high furrow backfill, even at speeds of up to 16 km h–1. The performance of bentleg openers need to be evaluated under residue conditions and in cohesive and adhesive soils. Recommendations for future research are presented.


2010 ◽  
Vol 67 (5) ◽  
pp. 562-569 ◽  
Author(s):  
Carlos Alexandre Costa Crusciol ◽  
André de Moraes Costa ◽  
Émerson Borghi ◽  
Gustavo Spadotti Amaral Castro ◽  
Dirceu Maximino Fernandes

Some crops have shown not to adapt to the no-tillage system (NTS) as a consequence of the compaction of the superficial soil layer. In a certain way, the mechanism used in seeders to open furrows for the deposition of fertilizers can have great importance in facilitating root penetration. This study was carried out to evaluate the influence of two fertilizer distribution mechanisms and N fertilization in upland rice (Oryza sativa) under NTS. The experiment was carried out in the growing seasons 2001/2002 and 2002/2003, in Botucatu, state of São Paulo, Brazil. A completely randomized block design was applied, with subdivided plots and four replications. Main plots consisted of two furrow opening mechanisms (furrow opener and double disk). Subplots consisted of four side dressing N levels (0, 40, 80 and 120 kg ha-1). The following parameters were evaluated: furrow and seed deposition depth, plant population, plant height, number of stems and panicles m-2, number of spikelets per panicle, spikelet fertility, weight of 1,000 grains, shoot dry matter, grain yield and N levels in the flag leaf. The success for upland rice establishment under the NTS in dry winter regions of Brazil is directly associated to the furrow opening mechanism of the seed-drill. The furrow opener mechanism resulted in deeper seed deposition, consequently decreasing seedling population, number of panicles per area and grain yield. Side dressing N fertilization in upland rice under NTS increases grain yield whenever the double disk mechanism is used to sow.


2015 ◽  
Vol 35 (1) ◽  
pp. 89-97
Author(s):  
EVANDRO M. BRANDELERO ◽  
AUGUSTO G. DE ARAÚJO ◽  
RICARDO RALISCH

Vegetation cover on soil acts positively in maintaining temperature and soil moisture, yet, it has been imposing specific operational conditions on seeders. The objective of this study was to evaluate performance of different mechanisms regarding straw mobilization, employed in a no-till seeder. The experimental area was conducted on clayey soil under no-tillage with a large quantity of sorghum residue. The experiment was established in a randomized block design, as the treatments consisted of a combination of two mechanisms at front of the furrow opener composed of cutting disc and row cleaners, and three mechanisms behind the seed furrower, covering discs prototype model M1, Spider and commercial model, with the combination of cutting disc and Spider model not being evaluated. We assessed the coverage permanence on soil index, vegetation mass on surface and inside the line. The treatment containing the row cleaner mechanism efficiently removed straw from the surface of sowing line as well as the return one acted on straw replacement. It was identified that use of the cutting disc at the front of seeder contributed to the increase of straw installation inside the line, three times more than in the row cleaner system when operating individually. Covering mechanism with row cleaners reduced straw inside the line and kept line covering similar to treatment of cutting disc operating alone.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


1985 ◽  
Vol 77 (6) ◽  
pp. 956-959 ◽  
Author(s):  
J. E. Rechcigl ◽  
D. D. Wolf ◽  
R. B. Reneau ◽  
W. Kroontje

jpa ◽  
1988 ◽  
Vol 1 (3) ◽  
pp. 202-206 ◽  
Author(s):  
O. B. Hesterman ◽  
F. J. Pierce ◽  
E. C. Rossman

Sign in / Sign up

Export Citation Format

Share Document