Influence of Surface Liming on the Yield and Nutrient Concentration of Alfalfa Established Using No‐Tillage Techniques 1

1985 ◽  
Vol 77 (6) ◽  
pp. 956-959 ◽  
Author(s):  
J. E. Rechcigl ◽  
D. D. Wolf ◽  
R. B. Reneau ◽  
W. Kroontje
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


jpa ◽  
1988 ◽  
Vol 1 (3) ◽  
pp. 202-206 ◽  
Author(s):  
O. B. Hesterman ◽  
F. J. Pierce ◽  
E. C. Rossman

jpa ◽  
1992 ◽  
Vol 5 (3) ◽  
pp. 378-382 ◽  
Author(s):  
F. W. Chichester ◽  
J. E. Morrison

2017 ◽  
Author(s):  
Jeremy T. Babin ◽  
◽  
Victoria E. Heath ◽  
Catherine M. O'Reilly ◽  
Richard Twait ◽  
...  

Fractals ◽  
1993 ◽  
Vol 01 (01) ◽  
pp. 11-19 ◽  
Author(s):  
SHU MATSUURA ◽  
SASUKE MIYAZIMA

A variety of colony shapes of the fungus Aspergillus oryzae under varying environmental conditions such as the nutrient concentration, medium stiffness and incubation temperature are obtained, ranging from a homogeneous Eden-like to a ramified DLA-like pattern. The roughness σ(l, h) of the growth front of the band-shaped colony, where h is the mean front height within l of the horizontal range, satisfies the self-affine fractal relation under favorable environmental conditions. In the most favorable condition of our experiments, its characteristic exponent is found to be a little larger than that of the 2-dimensional Eden model.


2021 ◽  
Vol 212 ◽  
pp. 105042
Author(s):  
Carmelo Maucieri ◽  
Massimo Tolomio ◽  
Marshall D. McDaniel ◽  
Yaojun Zhang ◽  
Javad Robatjazi ◽  
...  
Keyword(s):  

AoB Plants ◽  
2021 ◽  
Author(s):  
Bin J W Chen ◽  
Li Huang ◽  
Heinjo J During ◽  
Xinyu Wang ◽  
Jiahe Wei ◽  
...  

Abstract Root competition is a key factor determining plant performance, community structure and ecosystem productivity. To adequately estimate the extent of root proliferation of plants in response to neighbours independently of nutrient availability, one should use a setup that can simultaneously control for both nutrient concentration and soil volume at plant individual level. With a mesh-divider design, which was suggested as a promising solution for this problem, we conducted two intraspecific root competition experiments one with soybean (Glycine max) and the other with sunflower (Helianthus annuus). We found no response of root growth or biomass allocation to intraspecific neighbours, i.e. an ‘ideal free distribution’ (IDF) norm, in soybean; and even a reduced growth as a negative response in sunflower. These responses are all inconsistent with the hypothesis that plants should produce more roots even at the expense of reduced fitness in response to neighbours, i.e. root over-proliferation. Our results suggest that neighbour-induced root over-proliferation is not a ubiquitous feature in plants. By integrating the findings with results from other soybean studies, we conclude that for some species this response could be a genotype-dependent response as a result of natural or artificial selection, or a context-dependent response so that plants can switch from root over-proliferation to IDF depending on the environment of competition. We also critically discuss whether the mesh-driver design is the ideal solution for root competition experiments.


Sign in / Sign up

Export Citation Format

Share Document