Vibro-acoustic emission and heat stimulation effect on the detection of codling moth larvae in apples

2021 ◽  
Author(s):  
Alfadhl Y Khaled ◽  
Chadwick A Parrish ◽  
Nader Ekramirad ◽  
Kevin D Donohue ◽  
Raul T Villanueva ◽  
...  
2018 ◽  
Vol 61 (3) ◽  
pp. 1157-1164 ◽  
Author(s):  
Mengxing Li ◽  
Nader Ekramirad ◽  
Ahmed Rady ◽  
Akinbode Adedeji

Abstract. Incidence of codling moth (CM) ( L.) infestation in apples has been a major concern in North America for decades. CM larvae bore deep into the fruit, making it unmarketable. An effective noninvasive method to detect larvae-infested apples is necessary to ensure that apples are CM-free in post-harvest processing. In this study, a novel approach using an acoustic emission (AE) system and subsequent machine learning methods was applied to classify larvae-infested apples from intact apples. ‘GoldRush’ apples were infested with CM neonates and stored at the same conditions as intact apples. The AE system was used to collect the data emitted by 80 larvae-infested and intact apples in total. Eleven AE features that changed with signaling time were obtained with the AE system. For each feature, the area under the curve along the signaling time was calculated and used as an independent input variable for the machine learning algorithms, which included linear discriminant analysis (LDA) and ensemble method adaptive boosting. With signaling times ranging from 0.5 to 120 s, classification rates for infested versus intact apples ranged from 91% to 100% for the training set and from 83% to 100% for the test set. The quick signal collection and high classification accuracy obtained in this study show the potential of AE for detecting and classifying CM-infested apples. Keywords: Acoustic emission, Apple, Codling moth, Machine learning, Pest infestation.


2001 ◽  
Vol 148 (4) ◽  
pp. 169-177 ◽  
Author(s):  
R.P. Dalton ◽  
P. Cawley ◽  
M.J. Lowe
Keyword(s):  

2020 ◽  
Vol 92 (2) ◽  
pp. 20401
Author(s):  
Evgeniy Dul'kin ◽  
Michael Roth

In relaxor (1-x)SrTiO3-xBiFeO3 ferroelectrics ceramics (x = 0.2, 0.3 and 0.4) both intermediate temperatures and Burns temperatures were successfully detected and their behavior were investigated in dependence on an external bias field using an acoustic emission. All these temperatures exhibit a non-trivial behavior, i.e. attain the minima at some threshold fields as a bias field enhances. It is established that the threshold fields decrease as x increases in (1-x)SrTiO3-xBiFeO3, as it previously observed in (1-x)SrTiO3-xBaTiO3 (E. Dul'kin, J. Zhai, M. Roth, Phys. Status Solidi B 252, 2079 (2015)). Based on the data of the threshold fields the mechanisms of arising of random electric fields are discussed and their strengths are compared in both these relaxor ferroelectrics.


Sign in / Sign up

Export Citation Format

Share Document