scholarly journals Application of Acoustic Emission and Machine Learning to Detect Codling Moth Infested Apples

2018 ◽  
Vol 61 (3) ◽  
pp. 1157-1164 ◽  
Author(s):  
Mengxing Li ◽  
Nader Ekramirad ◽  
Ahmed Rady ◽  
Akinbode Adedeji

Abstract. Incidence of codling moth (CM) ( L.) infestation in apples has been a major concern in North America for decades. CM larvae bore deep into the fruit, making it unmarketable. An effective noninvasive method to detect larvae-infested apples is necessary to ensure that apples are CM-free in post-harvest processing. In this study, a novel approach using an acoustic emission (AE) system and subsequent machine learning methods was applied to classify larvae-infested apples from intact apples. ‘GoldRush’ apples were infested with CM neonates and stored at the same conditions as intact apples. The AE system was used to collect the data emitted by 80 larvae-infested and intact apples in total. Eleven AE features that changed with signaling time were obtained with the AE system. For each feature, the area under the curve along the signaling time was calculated and used as an independent input variable for the machine learning algorithms, which included linear discriminant analysis (LDA) and ensemble method adaptive boosting. With signaling times ranging from 0.5 to 120 s, classification rates for infested versus intact apples ranged from 91% to 100% for the training set and from 83% to 100% for the test set. The quick signal collection and high classification accuracy obtained in this study show the potential of AE for detecting and classifying CM-infested apples. Keywords: Acoustic emission, Apple, Codling moth, Machine learning, Pest infestation.

2021 ◽  
Author(s):  
Zhichang Zheng ◽  
Nian Wang ◽  
Bo Jiang ◽  
Chunpeng Ma ◽  
Hui Ai ◽  
...  

Abstract Background: The study aimed to use machine learning algorithms to predict the need for revascularization in patients presenting with chest pain to the emergency department.Methods: We obtained data from 581 patients with chest pain, 264 who underwent revascularization, and the other 317 were treated with medication alone at 3 months. Using standard algorithms, linear discriminant analysis, and standard algorithms, we analyzed 41 features relevant to coronary artery disease (CAD). Results: We identified seven robust predictive features. The combination of these predictors gave an area under the curve (AUC) of 0.830 to predict the need for revascularization. By contrast, the GRACE score gave an AUC of 0.68.Conclusions: This machine learning-based approach predicts the need for revascularization in patients with CAD.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Eli Bloch ◽  
Tammy Rotem ◽  
Jonathan Cohen ◽  
Pierre Singer ◽  
Yehudit Aperstein

Objective. Achieving accurate prediction of sepsis detection moment based on bedside monitor data in the intensive care unit (ICU). A good clinical outcome is more probable when onset is suspected and treated on time, thus early insight of sepsis onset may save lives and reduce costs. Methodology. We present a novel approach for feature extraction, which focuses on the hypothesis that unstable patients are more prone to develop sepsis during ICU stay. These features are used in machine learning algorithms to provide a prediction of a patient’s likelihood to develop sepsis during ICU stay, hours before it is diagnosed. Results. Five machine learning algorithms were implemented using R software packages. The algorithms were trained and tested with a set of 4 features which represent the variability in vital signs. These algorithms aimed to calculate a patient’s probability to become septic within the next 4 hours, based on recordings from the last 8 hours. The best area under the curve (AUC) was achieved with Support Vector Machine (SVM) with radial basis function, which was 88.38%. Conclusions. The high level of predictive accuracy along with the simplicity and availability of input variables present great potential if applied in ICUs. Variability of a patient’s vital signs proves to be a good indicator of one’s chance to become septic during ICU stay.


Author(s):  
Anik Das ◽  
Mohamed M. Ahmed

Accurate lane-change prediction information in real time is essential to safely operate Autonomous Vehicles (AVs) on the roadways, especially at the early stage of AVs deployment, where there will be an interaction between AVs and human-driven vehicles. This study proposed reliable lane-change prediction models considering features from vehicle kinematics, machine vision, driver, and roadway geometric characteristics using the trajectory-level SHRP2 Naturalistic Driving Study and Roadway Information Database. Several machine learning algorithms were trained, validated, tested, and comparatively analyzed including, Classification And Regression Trees (CART), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Naïve Bayes (NB) based on six different sets of features. In each feature set, relevant features were extracted through a wrapper-based algorithm named Boruta. The results showed that the XGBoost model outperformed all other models in relation to its highest overall prediction accuracy (97%) and F1-score (95.5%) considering all features. However, the highest overall prediction accuracy of 97.3% and F1-score of 95.9% were observed in the XGBoost model based on vehicle kinematics features. Moreover, it was found that XGBoost was the only model that achieved a reliable and balanced prediction performance across all six feature sets. Furthermore, a simplified XGBoost model was developed for each feature set considering the practical implementation of the model. The proposed prediction model could help in trajectory planning for AVs and could be used to develop more reliable advanced driver assistance systems (ADAS) in a cooperative connected and automated vehicle environment.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Junyi Li ◽  
Huinian Li ◽  
Xiao Ye ◽  
Li Zhang ◽  
Qingzhe Xu ◽  
...  

Abstract Background The prediction of long non-coding RNA (lncRNA) has attracted great attention from researchers, as more and more evidence indicate that various complex human diseases are closely related to lncRNAs. In the era of bio-med big data, in addition to the prediction of lncRNAs by biological experimental methods, many computational methods based on machine learning have been proposed to make better use of the sequence resources of lncRNAs. Results We developed the lncRNA prediction method by integrating information-entropy-based features and machine learning algorithms. We calculate generalized topological entropy and generate 6 novel features for lncRNA sequences. By employing these 6 features and other features such as open reading frame, we apply supporting vector machine, XGBoost and random forest algorithms to distinguish human lncRNAs. We compare our method with the one which has more K-mer features and results show that our method has higher area under the curve up to 99.7905%. Conclusions We develop an accurate and efficient method which has novel information entropy features to analyze and classify lncRNAs. Our method is also extendable for research on the other functional elements in DNA sequences.


2021 ◽  
Vol 13 (3) ◽  
pp. 63
Author(s):  
Maghsoud Morshedi ◽  
Josef Noll

Video conferencing services based on web real-time communication (WebRTC) protocol are growing in popularity among Internet users as multi-platform solutions enabling interactive communication from anywhere, especially during this pandemic era. Meanwhile, Internet service providers (ISPs) have deployed fiber links and customer premises equipment that operate according to recent 802.11ac/ax standards and promise users the ability to establish uninterrupted video conferencing calls with ultra-high-definition video and audio quality. However, the best-effort nature of 802.11 networks and the high variability of wireless medium conditions hinder users experiencing uninterrupted high-quality video conferencing. This paper presents a novel approach to estimate the perceived quality of service (PQoS) of video conferencing using only 802.11-specific network performance parameters collected from Wi-Fi access points (APs) on customer premises. This study produced datasets comprising 802.11-specific network performance parameters collected from off-the-shelf Wi-Fi APs operating at 802.11g/n/ac/ax standards on both 2.4 and 5 GHz frequency bands to train machine learning algorithms. In this way, we achieved classification accuracies of 92–98% in estimating the level of PQoS of video conferencing services on various Wi-Fi networks. To efficiently troubleshoot wireless issues, we further analyzed the machine learning model to correlate features in the model with the root cause of quality degradation. Thus, ISPs can utilize the approach presented in this study to provide predictable and measurable wireless quality by implementing a non-intrusive quality monitoring approach in the form of edge computing that preserves customers’ privacy while reducing the operational costs of monitoring and data analytics.


Hypertension ◽  
2021 ◽  
Vol 78 (5) ◽  
pp. 1595-1604
Author(s):  
Fabrizio Buffolo ◽  
Jacopo Burrello ◽  
Alessio Burrello ◽  
Daniel Heinrich ◽  
Christian Adolf ◽  
...  

Primary aldosteronism (PA) is the cause of arterial hypertension in 4% to 6% of patients, and 30% of patients with PA are affected by unilateral and surgically curable forms. Current guidelines recommend screening for PA ≈50% of patients with hypertension on the basis of individual factors, while some experts suggest screening all patients with hypertension. To define the risk of PA and tailor the diagnostic workup to the individual risk of each patient, we developed a conventional scoring system and supervised machine learning algorithms using a retrospective cohort of 4059 patients with hypertension. On the basis of 6 widely available parameters, we developed a numerical score and 308 machine learning-based models, selecting the one with the highest diagnostic performance. After validation, we obtained high predictive performance with our score (optimized sensitivity of 90.7% for PA and 92.3% for unilateral PA [UPA]). The machine learning-based model provided the highest performance, with an area under the curve of 0.834 for PA and 0.905 for diagnosis of UPA, with optimized sensitivity of 96.6% for PA, and 100.0% for UPA, at validation. The application of the predicting tools allowed the identification of a subgroup of patients with very low risk of PA (0.6% for both models) and null probability of having UPA. In conclusion, this score and the machine learning algorithm can accurately predict the individual pretest probability of PA in patients with hypertension and circumvent screening in up to 32.7% of patients using a machine learning-based model, without omitting patients with surgically curable UPA.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3532 ◽  
Author(s):  
Nicola Mansbridge ◽  
Jurgen Mitsch ◽  
Nicola Bollard ◽  
Keith Ellis ◽  
Giuliana Miguel-Pacheco ◽  
...  

Grazing and ruminating are the most important behaviours for ruminants, as they spend most of their daily time budget performing these. Continuous surveillance of eating behaviour is an important means for monitoring ruminant health, productivity and welfare. However, surveillance performed by human operators is prone to human variance, time-consuming and costly, especially on animals kept at pasture or free-ranging. The use of sensors to automatically acquire data, and software to classify and identify behaviours, offers significant potential in addressing such issues. In this work, data collected from sheep by means of an accelerometer/gyroscope sensor attached to the ear and collar, sampled at 16 Hz, were used to develop classifiers for grazing and ruminating behaviour using various machine learning algorithms: random forest (RF), support vector machine (SVM), k nearest neighbour (kNN) and adaptive boosting (Adaboost). Multiple features extracted from the signals were ranked on their importance for classification. Several performance indicators were considered when comparing classifiers as a function of algorithm used, sensor localisation and number of used features. Random forest yielded the highest overall accuracies: 92% for collar and 91% for ear. Gyroscope-based features were shown to have the greatest relative importance for eating behaviours. The optimum number of feature characteristics to be incorporated into the model was 39, from both ear and collar data. The findings suggest that one can successfully classify eating behaviours in sheep with very high accuracy; this could be used to develop a device for automatic monitoring of feed intake in the sheep sector to monitor health and welfare.


Information ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 35
Author(s):  
Jibouni Ayoub ◽  
Dounia Lotfi ◽  
Ahmed Hammouch

The analysis of social networks has attracted a lot of attention during the last two decades. These networks are dynamic: new links appear and disappear. Link prediction is the problem of inferring links that will appear in the future from the actual state of the network. We use information from nodes and edges and calculate the similarity between users. The more users are similar, the higher the probability of their connection in the future will be. The similarity metrics play an important role in the link prediction field. Due to their simplicity and flexibility, many authors have proposed several metrics such as Jaccard, AA, and Katz and evaluated them using the area under the curve (AUC). In this paper, we propose a new parameterized method to enhance the AUC value of the link prediction metrics by combining them with the mean received resources (MRRs). Experiments show that the proposed method improves the performance of the state-of-the-art metrics. Moreover, we used machine learning algorithms to classify links and confirm the efficiency of the proposed combination.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 264-265
Author(s):  
Duy Ngoc Do ◽  
Guoyu Hu ◽  
Younes Miar

Abstract American mink (Neovison vison) is the major source of fur for the fur industries worldwide and Aleutian disease (AD) is causing severe financial losses to the mink industry. Different methods have been used to diagnose the AD in mink, but the combination of several methods can be the most appropriate approach for the selection of AD resilient mink. Iodine agglutination test (IAT) and counterimmunoelectrophoresis (CIEP) methods are commonly employed in test-and-remove strategy; meanwhile, enzyme-linked immunosorbent assay (ELISA) and packed-cell volume (PCV) methods are complementary. However, using multiple methods are expensive; and therefore, hindering the corrected use of AD tests in selection. This research presented the assessments of the AD classification based on machine learning algorithms. The Aleutian disease was tested on 1,830 individuals using these tests in an AD positive mink farm (Canadian Centre for Fur Animal Research, NS, Canada). The accuracy of classification for CIEP was evaluated based on the sex information, and IAT, ELISA and PCV test results implemented in seven machine learning classification algorithms (Random Forest, Artificial Neural Networks, C50Tree, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) using the Caret package in R. The accuracy of prediction varied among the methods. Overall, the Random Forest was the best-performing algorithm for the current dataset with an accuracy of 0.89 in the training data and 0.94 in the testing data. Our work demonstrated the utility and relative ease of using machine learning algorithms to assess the CIEP information, and consequently reducing the cost of AD tests. However, further works require the inclusion of production and reproduction information in the models and extension of phenotypic collection to increase the accuracy of current methods.


Sign in / Sign up

Export Citation Format

Share Document