Assessing the Effects of Drip Irrigation System Uniformity and Spatial Variability in Soil on Nitrate Leaching through Simulation

2016 ◽  
Vol 59 (1) ◽  
pp. 279-290 ◽  
Irriga ◽  
2002 ◽  
Vol 7 (3) ◽  
pp. 201-213
Author(s):  
Ivana Furio Batista ◽  
Célia Regina Lopes Zimback ◽  
Juliana Aguiar Vettorato

VARIABILIDADE ESPACIAL DA UMIDADE DO SOLO EM IRRIGAÇÃO POR GOTEJAMENTO SOB CULTIVO PROTEGIDO[1]   Ivana Fúrio BatistaCélia Regina Lopes ZimbackJuliana Aguiar VettoratoDepartamento de Recursos Naturais, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, CP 237, CEP 18603-970. E-mail: [email protected]    1 RESUMO              Foi estudada a variabilidade espacial da umidade do solo num sistema de irrigação por gotejamento em uma estufa (5,0 x 20,0m) na Fazenda Experimental São Manuel, da Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Estado de São Paulo, Brasil. Foi estabelecida a malha de amostragem no espaçamento de 1,0 x 0,5m, acrescida de quatro adensamentos de 0,25m. Foram utilizados dados da umidade do solo em 178 pontos. A análise da dependência espacial foi obtida com o auxílio do Programa GS+. Foi construído o variograma experimental e definido o modelo de ajuste, de modo que a curva que melhor se ajustou aos pontos obtidos representasse a magnitude, alcance e intensidade da variabilidade espacial da variável estudada. A umidade do solo apresentou distribuição espacial anisotrópica. Para a direção 0°, pode-se notar uma dependência espacial caracterizada como alta, com o alcance de aproximadamente 3,30m, no sentido do comprimento da estufa. Entretanto, no sentido da largura da estufa, não foi possível ajustar modelos. Utilizando a representação gráfica da superfície, a área estudada apresentou um maior teor de água na parte inicial e menor na parte final das linhas de distribuição de água. A krigagem mostrou-se um bom interpolador para mapeamento da umidade do solo.  UNITERMOS: geoestatística, dependência espacial, umidade do solo, irrigação por gotejamento, cultivo protegido.   BATISTA, I.F.; ZIMBACK, C.R.L.; VETTORATO, J.A.  SPATIAL VARIABILITY OF SOIL MOISTURE IN A DRIP IRRIGATION SYSTEM UNDER GREENHOUSE   2 ABSTRACT             Soil moisture spatial variability in a drip irrigation system was studied in a greenhouse (5.0 x 20.0m) at São Manuel Experimental Farm, FCA/UNESP, Botucatu – SP, Brazil. Sampling was established in a 1.0 x 0.5m grid, increased 0.25m thickening. Soil moisture data were used in 178 points. The spatial dependence analysis was obtained with the aid of the GS+ Program. The experimental variogram was built and the setting model defined, so that the curve better fitted to the obtained points represented the spatial variability magnitude, range and intensity of the studied variable. Soil moisture presented anisotropic spatial distribution. Spatial dependence was noticed for 0° direction, characterized as high, with approximately 3.30m range in the greenhouse length ward. However, in the greenhouse width ward, it was not possible to fit models. Using the surface graphic representation, the studied area presented higher water content in the initial part and a lower one in the final part of water distribution lines. Kriging was shown to be a good interpolator for soil moisture mapping.  KEYWORDS: geostatistics, spatial dependence, soil moisture, drip irrigation, greenhouse.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1964 ◽  
Author(s):  
Ortuani ◽  
Facchi ◽  
Mayer ◽  
Bianchi ◽  
Bianchi ◽  
...  

Although many studies in the literature illustrate the numerous devices and methodologies nowadays existing for assessing the spatial variability within agricultural fields, and indicate the potential for variable-rate irrigation (VRI) in vineyards, only very few works deal with the implementation of VRI systems to manage such heterogeneity, and these studies are usually conducted in experimental fields for research aims. In this study, a VR drip irrigation system was designed for a 1-ha productive vineyard in Northern Italy and managed during the agricultural season 2018, to demonstrate feasibility and effectiveness of a water supply differentiated according to the spatial variability detected in field. Electrical resistivity maps obtained by means of an electro-magnetic induction sensor were used to detect four homogeneous zones with similar soil properties. In each zone, a soil profile was opened, and soil samples were taken and analyzed in laboratory. Two irrigation management zones (MZs) were identified by grouping homogeneous zones on the basis of their hydrological properties, and an irrigation prescription map was built consistently with the total available water (TAW) content in the root zone of the two MZs. The designed drip irrigation system consisted of three independent sectors: the first two supplied water to the two MZs, while the third sector (reference sector) was managed following the farmer’s habits. During the season, irrigation in the first two sectors was fine-tuned using information provided by soil moisture probes installed in each sector. Results showed a reduction of water use by 18% compared to the ‘reference’ sector without losses in yield and product quality, and a grape’s maturation more homogeneous in time.


Author(s):  
J.N. Abedalrahman ◽  
R.J. Mansor ◽  
D.R. Abass

A field experiment was carried out in the field of the College of Agriculture / University of Wasit, located on longitude  45o   50o   33.5o   East and latitude 32o 29o 49.8o North, in Spring season of the agricultural season 2019, in order to estimate the water consumption of potato crop using SWRT technology and under the drip irrigation system. The experiment was designed according to Randomized Complete Block Design (RCBD) with three replications and four treatments that include of the SWRT treatment (the use of plastic films under the plant root area in an engineering style), and the treatment of vegetal fertilizer (using Petmos), organic fertilizer (sheep manure), and the control treatment . Potato tubers (Solanum tuberosum L.)  var. Burin was planted for spring season on 10/2/2019 at the soil depth of 5-10 cm. The highest reference water consumption for the potato crop during the season was calculated by Najeeb Kharufa, which was 663.03 mm. The highest actual water consumption for the potato crop during the season for the control treatment was 410.1 mm. The results showed increase in the values of the crop coefficient (Kc) in the stages of tubers formation and tubers filling stage as compared to the vegetative and ripening stages, ranged from 1.37-1.92 for the two stages of tubers formation and tubers filling. The SWRT treatment gave the highest water use efficiency during the season, was 3.46 kg m-3 .


2019 ◽  
Vol 223 ◽  
pp. 105696 ◽  
Author(s):  
Lili Zhangzhong ◽  
Peiling Yang ◽  
Wengang Zhen ◽  
Xin Zhang ◽  
Caiyuan Wang

Sign in / Sign up

Export Citation Format

Share Document