Response of Tomato Plants to Water Irrigation Levels and some Foliar Applications under Drip Irrigation System: 1- Vegetative Growth and Chemical Constituents of L.

2019 ◽  
Vol 10 (3) ◽  
pp. 265-273
Author(s):  
K. Dawa ◽  
T. Al-Gazar ◽  
A. Abdel-Fatah
2017 ◽  
Vol 19 (2) ◽  
pp. 71-77 ◽  
Author(s):  
HA Archana ◽  
N Asoka Raja ◽  
R Mahesh ◽  
R Kalpana

A study was conducted to determine the effect of low cost drip tape irrigation system on yield and economics of sweet corn in comparison to conventional inline drip irrigation and surface irrigation systems during 2013-14 at Coimbatore, India. The treatment comprises of two drip irrigation systems with three irrigation levels viz., 75, 100 and 125% of pan evaporation (PE) from Class A Pan evaporimeter. Plant height, fresh cob length, girth, number of kernels per cob and single fresh cob weight and yield were higher at 125% PE in conventional in line drip irrigation system and it was statistically at par with drip irrigation at 125% PE in low cost drip tape irrigation system. Water saving was 36, 49 and 62% at 125, 100 and 75% PE, respectively under conventional in line drip irrigation system and drip tape irrigation system as against the surface irrigation. The cost of low cost drip tape system was 68% lower than the conventional inline drip system. The results of the research indicated that based on net income, B:C ratio and GM/TMV ratio, adoption of low cost drip tape irrigation system at 125% PE was found to be best for small and marginal farmers with substantial yield and income compared to conventional inline drip system.Bangladesh Agron. J. 2016 19(2): 71-77


Author(s):  
Tasisa Temesgen Tolossa

The increasing scarcity and competition for irrigation water entails adoption of innovative practices that increase efficient water use. The objective of this research was to compare different mulching techniques and investigated the combined effect of irrigation levels under drip irrigation system based on the parametric evaluation system in western part of Ethiopia during the 2018 dry season. A factorial combination of five levels of water (namely 100%, 80% and 70%, 60% and 50%ETc) combined with three mulch treatments (namely, Normal Mulch (NM), Straw Mulch (SM) and Plastic Mulch (PM)) with three replications. The analysis of variance showed that, days to 50% maturity, leaf number per plant, mean leaf length, plant height and leaf area were significantly affected by the main effects of deficit irrigation levels and mulching materials. The interaction effects of deficit irrigation levels and mulching materials significantly influenced plant height, number of leaf per plant, plant height, Leaf length and Leaf area of the onion. The present study suggests that, in water scarce area, farmers are advised to adopt deficit irrigation level with 80% ETc under plastic mulch. It is important even to undertake similar studies at different seasons with different varieties in consideration of their cost benefit analysis. However, if water is not a limiting factor, farmers are advised to apply full irrigation water application under plastic mulch.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1313
Author(s):  
Ariel Méndez-Cifuentes ◽  
Luis Alonso Valdez-Aguilar ◽  
Martín Cadena-Zapata ◽  
José Antonio González-Fuentes ◽  
José Alfredo Hernández-Maruri ◽  
...  

Greenhouse cultivation is highly efficient in the use of water and fertilizers. However, due to intensive production, the greenhouse industry applies ample amounts of water and fertilizers. An alternative to minimize water and nutrient loss is zero-leaching systems, such as closed-loop subirrigation. The objective of the present study was to compare the water and fertilizer use efficiency in containerized tomato plants grown in a subirrigation system and a drip irrigation system. Subirrigated plants exhibited lower biomass than drip-irrigated plants. However, the amount of nutrient solution required to restore evapotranspirated water was lower in subirrigation. The yield was marginally decreased in subirrigated plants compared to drip-irrigated plants. The amount of nutrient solution required to produce 1 kg of fresh tomatoes was 22 L in subirrigation, whereas in drip irrigation, plants demanded 41 L. The total nitrogen applied through the nutrient solution was 75% lower in subirrigation than in drip irrigation, while the phosphorus, potassium, calcium and magnesium applied was 66%, 59%, 70% and 74% lower, respectively. We concluded that the subirrigation system proved to be more water- and nutrient-efficient than the drip irrigation system due to the zero leaching of the nutrient solution, the lower number of irrigation events required and the lower nutrient demand of plants.


Sign in / Sign up

Export Citation Format

Share Document