scholarly journals AN APPLICATION OF AHP IN CLIMATE CHANGE MITIGATION WITH ACQUIRING RENEWABLE ENERGY TECHNOLOGIES IN NEPAL

2016 ◽  
Author(s):  
Prabal Sapkota ◽  
◽  
Martina Pokharel ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3170
Author(s):  
Avri Eitan

Evidence shows that global climate change is increasing over time, and requires the adoption of a variety of coping methods. As an alternative for conventional electricity systems, renewable energies are considered to be an important policy tool for reducing greenhouse gas emissions, and therefore, they play an important role in climate change mitigation strategies. Renewable energies, however, may also play a crucial role in climate change adaptation strategies because they can reduce the vulnerability of energy systems to extreme events. The paper examines whether policy-makers in Israel tend to focus on mitigation strategies or on adaptation strategies in renewable energy policy discourse. The results indicate that despite Israel’s minor impact on global greenhouse gas emissions, policy-makers focus more on promoting renewable energies as a climate change mitigation strategy rather than an adaptation strategy. These findings shed light on the important role of international influence—which tends to emphasize mitigation over adaptation—in motivating the domestic policy discourse on renewable energy as a coping method with climate change.


2015 ◽  
Vol 19 (2) ◽  
pp. 411-424 ◽  
Author(s):  
Vladica Bozic ◽  
Slobodan Cvetkovic ◽  
Branislav Zivkovic

2020 ◽  
Vol 15 (3) ◽  
pp. 393-401
Author(s):  
Ram Chandra Khanal ◽  
Shree Raj Shakya ◽  
Tri Ratna Bajracharya

Renewable energy can contribute to adaptation to climate change, mitigation and development and may play an important role in resilient development ambition of Nepal. It has been emphasized in Nepal's Nationally Determined Contribution (NDC) and climate change policy but its potential impact on SDGs era has not been fully explored and implemented. The study used employed energy system modelling by using optimization software, reviewed literature and interacted with various experts. It has been found that renewable energy technologies (RETs) provide socio-economic and environmental benefits to people that contribute to adopting and ensuring a better adaptation to climate change based on the local context. They contribute to adaptation processes by contributing to reducing the vulnerability of people, improving adaptive capacity, and minimizing climate change risk in line with SDG 7. But these are not without challenges either. Financial, technical, institutional, policy and legal issues are major challenges to promote RETs. This study shows that theoretically altogether 4.45 million tons of CO2e of the GHG emission can be mitigated per year if all the remaining technical potential of deploying seven major RETs consisting of biogas, improved water mill, stand-alone micro-hydro plants, mini-grid micro-hydro plants, solar PV home systems, mud-ICS and metal-ICS were installed after 2012. Considering the average annual installation of these RETs, altogether 30.71 million tons of CO2e can be mitigated between the periods of 2013 to 2030 at an annual additional installation equal to average installation done in recent past three years. The initial technology investment required for implementing the above mentioned RETs ranges from NRs 97 to NRs 23,247 per ton of CO2e mitigation. This indicates that though a moderate level of the initial investment is required for promoting RETs, the GHG mitigation potential seems to be quite promising. There is no liberty of inaction, so RETs can be a good case for a triple win strategy to address mitigation – adaptation – development nexus for climate compatible development in Nepal.


2019 ◽  
Author(s):  
KELOLA Sendang

Nypa fruiticans, commonly known as Nipa Palm, is a species of palm native to the coastlines and estuarine habitats of the Indian and Pacific Oceans. In Indonesia, nipa palm covers about 700,000 ha, while, in South Sumatra, the Nipa Palm is a natural component of mangrove forests and covers extensive areas along the coast, estuaries, and riparian zones of rivers. About half of the natural nipa palm ecosystem in South Sumatra has been disturbed by human activities and requires restoration. Since Nipa Palm can be used to produce nipa palm sugar, natural nipa palm forests have the potential to generate sustainable rural livelihoods for those living in the lowland zone. More recently, nipa palm has been identified as a potential source of renewable energy. The sugar rich sap can be used to produce ethanol, a biofuel. Because of this potential, the KELOLA Sendang Project is exploring the potential of nipa palm for ecosystem restoration and climate change mitigation, sustainable rural livelihoods and renewable energy.


Sign in / Sign up

Export Citation Format

Share Document