Numerical and Experimental Study of Inverse Diffusion LPG-Air Flames Pulsation

Author(s):  
Mahmoud Magdy ◽  
Mahmoud Kamal ◽  
Ashraf Mostafa Hamed ◽  
Ahmed Eldein Hussin ◽  
W. Aboelsoud

This study uses Ansys 16 commercial package to investigate an accurate numerical model that can trace the flame shape from inverse diffusion combustion of LPG with a focus on the effect of air pulsation on the combustion characteristics. The simulation is based on solving the energy, mass and momentum equations. The large eddy simulation turbulence model and the non-premixed combustion model are used to simulate the pulsating combustion reaction flows in a cylindrical chamber with an air frequency of 10,20,50,100 and 200 rad/sec. The numerical results are in great agreement with the experimental results in the flame shape and the temperature distribution along the combustion chamber in both pulsating and non-pulsating combustion. Diffusion combustion responds positively to pulsating combustion and increases mixing in the reaction zone. Increasing the air frequency increases the temperature fluctuations, the peak turbulent kinetic energy and maximum velocity magnitude, respectively, by 27.3%, 300%, and 200%. Increasing the Strouhal number to 0.23 shortens the flame by 40% and reduces nitric oxide and carbon monoxide by 12% and 40%, respectively, including an environmentally friendly combustion product. The maximum average temperature dropped from 1800 K to 1582 K with a very homogeneous temperature distribution along the combustion chamber which is very important for furnaces.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Camilo Andrés Sedano ◽  
Omar Darío López ◽  
Alexander Ladino ◽  
Felipe Muñoz

A computational model using Large Eddy Simulation (LES) for turbulence modelling was implemented, by means of the Eddy Dissipation Concept (EDC) combustion model using the fireFoam solver. A small methanol pool fire experiment was simulated in order to validate and compare the numerical results, hence trying to validate the effectiveness of the solver. A detailed convergence analysis is performed showing that a mesh of approximately two million elements is sufficient to achieve satisfactory numerical results (including chemical kinetics). A good agreement was achieved with some of the experimental and previous computational results, especially in the prediction of the flame height and the average temperature contours.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alain Fossi ◽  
Alain DeChamplain ◽  
Benjamin Akih-Kumgeh ◽  
Jeffrey Bergthorson

Purpose This study aims to deal with the large eddy simulation (LES) of an ignition sequence and the resulting steady combustion in a swirl-stabilized liquid-fueled combustor. Particular attention is paid to the ease of handling the numerical tool, the accuracy of the results and the reasonable computational cost involved. The primary aim of the study is to appraise the ability of the newly developed computational fluid dynamics (CFD) methodology to retrieve the spark-based flame kernel initiation, its propagation until the full ignition of the combustion chamber, the flame stabilization and the combustion processes governing the steady combustion regime. Design/methodology/approach The CFD model consists of an LES-based spray module coupled to a subgrid-scale ignition model to capture the flame kernel initiation and the early stage of the flame kernel growth, and a combustion model based on the mixture fraction-progress variable formulation in the line of the flamelet generated manifold (FGM) method to retrieve the subsequent flame propagation and combustion properties. The LES-spray module is based on an Eulerian-Lagrangian approach and includes a fully two-way coupling at each time step to account for the interactions between the liquid and the gaseous phases. The Wall-Adapting Local Eddy-viscosity (WALE) model is used for the flow field while the eddy diffusivity model is used for the scalar fluxes. The fuel is liquid kerosene, injected in the form of a polydisperse spray of droplets. The spray dynamics are tracked using the Lagrangian procedure, and the phase transition of droplets is calculated using a non-equilibrium evaporation model. The oxidation mechanism of the Jet A-1 surrogate is described through a reduced reaction mechanism derived from a detailed mechanism using a species sensitivity method. Findings By comparing the numerical results with a set of published data for a swirl-stabilized spray flame, the proposed CFD methodology is found capable of capturing the whole spark-based ignition sequence in a liquid-fueled combustion chamber and the main flame characteristics in the steady combustion regime with reasonable computing costs. Research limitations/implications The proposed CFD methodology simulates the whole ignition sequence, namely, the flame kernel initiation, its propagation to fully ignite the combustion chamber, and the global flame stabilization. Due to the lack of experimental ignition data on this liquid-fueled configuration, the ability of the proposed CFD methodology to accurately predict ignition timing was not quantitatively assessed. It would, therefore, be interesting to apply this CFD methodology to other configurations that have experimental ignition data, to quantitatively assess its ability to predict the ignition timing and the flame characteristics during the ignition sequence. Such further investigations will not only provide further validation of the proposed methodology but also will potentially identify its shortfalls for better improvement. Practical implications This CFD methodology is developed by customizing a commercial CFD code widely used in the industry. It is, therefore, directly applicable to practical configurations, and provides not only a relatively straightforward approach to predict an ignition sequence in liquid-fueled combustion chambers but also a robust way to predict the flame characteristics in the steady combustion regime as significant improvements are noticed on the prediction of slow species. Originality/value The incorporation of the subgrid ignition model paired with a combustion model based on tabulated chemistry allows reducing computational costs involved in the simulation of the ignition phase. The incorporation of the FGM-based tabulated chemistry provides a drastic reduction of computing resources with reasonable accuracy. The CFD methodology is developed using the platform of a commercial CFD code widely used in the industry for relatively straightforward applicability.


Author(s):  
Gasser Hassan ◽  
Mohamed Pourkashanian ◽  
Derek Ingham ◽  
Lin Ma ◽  
Stephen Taylor

This study is concerned with building a computational fluid dynamics (CFD) model to simulate the combustion process occurring in the combustion chamber of some domestic boilers. The burner used in this boiler is a conventional cylindrical premix burner with small inlet holes on its surface. A two-dimensional CFD model is built to simulate the combustion chamber domain, and the partially premixed combustion model with a postprocessor for NOx calculations is used to simulate the combustion process inside the combustion chamber. A complete description of the formation characteristics of NOx produced from the boiler is discussed in detail. A comparison between the CFD numerical results and the experimental measurements at different boiler loads is performed in order to validate the numerical model and investigate the accuracy of the CFD model. The validated CFD model is used to investigate the effect of different boundaries temperatures and the mixture inlet velocity on the flue gas average temperature, residence time, and hence the CO and NOx concentrations produced from the combustion chamber. The concept of changing the mixture inlet velocity is found to be an effective method to improve the design of the burner in order to reduce the pollutant emissions produced from the boiler with no effect on the boiler efficiency.


Author(s):  
Gasser Hassan ◽  
Mohamed Pourkashanian ◽  
Derek Ingham ◽  
Lin Ma ◽  
Stephen Taylor

This study is concerned with building a computational fluid dynamics (CFD) model to simulate the combustion process occurring in the combustion chamber of some domestic boilers. The burner used in this boiler is a conventional cylindrical premix burner with small inlet holes on its surface. A two-dimensional (2D) CFD model is built to simulate the combustion chamber domain and the partially premixed combustion model with a postprocessor for NOx calculations is used to simulate the combustion process inside the combustion chamber. A complete description of the formation characteristics of NOx produced from the boiler is discussed in detail. A comparison between the CFD numerical results and the experimental measurements at different boiler loads is performed in order to validate the numerical model and investigate the accuracy of the CFD model. The validated CFD model is used to investigate the effect of different boundaries temperatures and the mixture inlet velocity on the flue gas average temperature, residence time and hence the CO and NOx concentrations produced from the combustion chamber. The concept of changing the mixture inlet velocity is found to be an effective method to improve the design of the burner in order to reduce the pollutant emissions produced from the boiler with no effect on the boiler efficiency.


Author(s):  
Samir Rida ◽  
Saugata Chakravorty ◽  
Jaydeep Basani ◽  
Stefano Orsino ◽  
Naseem Ansari

In Rich-Quench-Lean design of aircraft gas turbine combustors, primary zone mixing is critical for emissions, flame shape, and heat transfer. From a modeling perspective, the primary zone flow prediction is largely impacted by the fidelity of the mixing model and the type of combustion model used. The assumption that fuel spray burns in a diffusion flame or in a partially premixed flame has an impact on the combustor’s performance parameters. In this paper, we compare the non-premixed steady diffusion flamelet model with the partially premixed flamelet generated manifold model for several Honeywell combustors using the commercial CFD code ANSYS FLUENT. The validations are made in the context of Large Eddy Simulation and the time averaged CFD results are compared with rig data highlighting the impact of the combustion models on combustor performance. Results show that the flamelet generated manifold combustion model provides a more realistic lifted flame shape that is not in contact with the fuel nozzle.


2016 ◽  
Vol 188 (9) ◽  
pp. 1472-1495 ◽  
Author(s):  
Katsuhiro Hiraoka ◽  
Yuki Minamoto ◽  
Masayasu Shimura ◽  
Yoshitsugu Naka ◽  
Naoya Fukushima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document