scholarly journals Research on Influence of Different types of Orifice on Axial Steady-state Flow Force in Cartridge Proportional Valve

Author(s):  
Li Tan ◽  
Haibo Xie ◽  
Jianbin Liu ◽  
Hanben Chen ◽  
Huayong Yang

This article mainly investigates how orifice structure influences the characteristics of steady-state flow force. The research model of this paper is originated from a cartridge proportional valve. Firstly, predicting characteristics of the flow force working on poppet in different types of orifice through CFD simulations; secondly, several parameters of poppet and seat, which may affect the characteristics of flow force, are defined, a series of CFD calculations were conducted to find a rule how each parameter influences flow force; thirdly, according to the analysis, optimization of orifice structure parameters has been successfully realized. Finally, a test bench was established to validate the simulation results. The results show that the orifice type has a significant influence on flow force, which indicates that choosing certain type of orifice can effectively decrease the influence of flow force, and the negative effect of flow force can be reduced within an acceptable extent. Besides, the influence of orifice on pressure difference has been also taken into account. The experimental results agree well with the simulative one.

Author(s):  
Patrik Bordovsky ◽  
Hubertus Murrenhoff

When designing an actuator for a spool type directional control valve, axial forces acting on the spool have to be estimated. The steady-state flow force is the dominant axial force, which usually acts in the closing direction of the valve. However, many factors such as the valve geometry and the oil properties influence the flow force characteristics. Investigations regarding their effects on steady-state flow forces are described within this paper. Different spool geometries of a test 2/2-way spool valve are used for steady-state flow force measurements at different oil temperatures. The measurement data are used for validation of CFD simulations, which are carried out to scrutinise the flow inside the valve. Besides the steady-state flow forces, the fluid flow angles at the inlet and the outlet of the spool chamber are analysed. The results show that the spool geometry has a significant influence both on the flow rate and the steady-state flow force characteristics. Especially, the shape of the control edge has an impact on the flow patterns and on the magnitudes of steady-state flow forces. Moreover, the inlet and outlet fluid flow angles do not correlate with the expected values, which are commonly used for an analytical estimation of the flow forces. Furthermore, the oil temperature leads to quantitative deviations of the steady-state flow forces.


2020 ◽  
Vol 38 (12A) ◽  
pp. 1783-1789
Author(s):  
Jaafar S. Matooq ◽  
Muna J. Ibraheem

 This paper aims to conduct a series of laboratory experiments in case of steady-state flow for the new size 7 ̋ throat width (not presented before) of the cutthroat flume. For this size, five different lengths were adopted 0.535, 0.46, 0.40, 0.325 and 0.27m these lengths were adopted based on the limitations of the available flume. The experimental program has been followed to investigate the hydraulic characteristic and introducing the calibrated formula for free flow application within the discharge ranged between 0.006 and 0.025 m3/s. The calibration result showed that, under suitable operation conditions, the suggested empirical formulas can accurately predict the values of discharge within an error ± 3%.


1996 ◽  
Vol 27 (4) ◽  
pp. 247-254 ◽  
Author(s):  
Zekâi Şen

A simple, approximate but practical graphical method is proposed for estimating the storage coefficient independently from the transmissivity value, provided that quasi-steady state flow data are available from a pumping test. In the past, quasi-steady state flow distance-drawdown data have been used for the determination of transmissivity only. The method is applicable to confined and leaky aquifers. The application of the method has been performed for various aquifer test data available in the groundwater literature. The results are within the practical limits of approximation compared with the unsteady state flow solutions.


2004 ◽  
Author(s):  
J.S. Kim ◽  
Y. Dong ◽  
W.R. Rossen

Author(s):  
Michael Blocher ◽  
Markus May ◽  
Harald Schoenenborn

The influence of the steady state flow solution on the aero-elastic stability behaviour of an annular compressor cascade shall be studied in order to determine sensitivities of the aero-dynamic damping with respect to characteristic flow parameters. In this context two different flow regimes — a subsonic and a transonic case — are subject to the analysis. The pressure distributions, steady as well as unsteady, on the blade surface of the NACA3506 profile are compared to experimental data that has been gained by the Institute of Aeroelasticity of the German Aerospace Center (DLR) during several wind tunnel tests at the annular compressor cascade facility RGP-400 of the Ecole Polytechnique Fe´de´rale de Lausanne (EPFL). Whereas a certain robustness of the unsteady CFD results can be stated for the subsonic flow regime, the transonic regime proves to be very sensitive with respect to the steady state solution.


Sign in / Sign up

Export Citation Format

Share Document