scholarly journals Pseudomonas plecoglossicida as a novel bacterium for phosphate solubilizing and indole-3-acetic acid-producing from soybean rhizospheric soils of East Java, Indonesia

2020 ◽  
Vol 21 (2) ◽  
Author(s):  
Meli Astriani ◽  
SITI ZUBAIDAH ◽  
ABDUL LATIEF ABADI ◽  
ENDANG SUARSINI

Abstract. Astriani M, Zubaidah S, Abadi AL, Suarsini E. 2020. Pseudomonas plecoglossicida as a novel bacterium for phosphate solubilizing and indole-3-acetic acid-producing from soybean rhizospheric soils of East Java, Indonesia. Biodiversitas 21: 578-586. The use of synthetic fertilizers to grow soybean (Glycine max (L.) Merrill) in a long time, can increase the risk of environmental damage. Therefore, the current study aimed to find phosphate solubilizing bacteria that can produce indole-3-acetic acid (IAA) hormone to minimize the use of chemical fertilizers. Superior isolates selected through characterization of phosphate solubilization activity on Pikovskaya medium, screening of IAA producing bacteria, quantitative estimation of phosphate solubilizing activity using a spectrophotometer, hypersensitivity assay, antagonist within isolate assay, and molecular identification of selected bacterial isolates using 16S rRNA sequencing with primer forward 63f and primer reverse 1387r. Among the isolated bacteria, isolate Arj8 showed the highest phosphate solubilizing activity and IAA production. Molecular identification indicated that isolate Arj8 shared 100% similarity with Pseudomonas plecoglossicida. The highest phosphate solubilizing activity (75.39 mg/L) and IAA production (38.89 ppm) recorded on day-3. Multiple potentialities of P. plecoglossicida as phosphate solubilizing and IAA producing bacterium are a novel finding in the development of bioinoculants as bio-fertilizers that can reduce dependency on synthetic chemical fertilizers.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Poovarasan Neelakandan ◽  
Chiu-Chung Young ◽  
Asif Hameed ◽  
Yu-Ning Wang ◽  
Kui-Nuo Chen ◽  
...  

AbstractTea leaves possess numerous volatile organic compounds (VOC) that contribute to tea’s characteristic aroma. Some components of tea VOC were known to exhibit antimicrobial activity; however, their impact on bacteria remains elusive. Here, we showed that the VOC of fresh aqueous tea leaf extract, recovered through hydrodistillation, promoted cell division and tryptophan-dependent indole-3-acetic acid (IAA) production in Pseudomonas sp. NEEL19, a solvent-tolerant isolate of the tea phylloplane. 1-octanol was identified as one of the responsible volatiles stimulating cell division, metabolic change, swimming motility, putative pili/nanowire formation and IAA production, through gas chromatography-mass spectrometry, microscopy and partition petri dish culture analyses. The bacterial metabolic responses including IAA production increased under 1-octanol vapor in a dose-dependent manner, whereas direct-contact in liquid culture failed to elicit such response. Thus, volatile 1-octanol emitting from tea leaves is a potential modulator of cell division, colonization and phytohormone production in NEEL19, possibly influencing the tea aroma.


1996 ◽  
Vol 42 (6) ◽  
pp. 586-592 ◽  
Author(s):  
M. Brandi ◽  
E. M. Clark ◽  
S. E. Lindow

An epiphytic strain of Erwinia herbicola (strain 299R) synthesized indole-3-acetic acid (IAA) from indole-3-pyruvic acid and indole-3-acetaldehyde, but not from indole-3-acetamide and other intermediates of various IAA biosynthetic pathways in enzyme assays. TLC, HPLC, and GC–MS analyses revealed the presence of indole-3-pyruvic acid, indole-3-ethanol, and IAA in culture supernatants of strain 299R. Indole-3-acetaldehyde was detected in enzyme assays. Furthermore, strain 299R genomic DNA shared no homology with the iaaM and iaaH genes from Pseudomonas syringae pv. savastanoi, even in Southern hybridizations performed under low-stringency conditions. These observations strongly suggest that unlike gall-forming bacteria which can synthesize IAA by indole-3-acetamide, the indole-3-pyruvic acid pathway is the primary route for IAA biosynthesis in this plant-associated strain. IAA synthesis in tryptophan-supplemented cultures of strain 299R was over 10-fold higher under nitrogen-limiting conditions, indicating a possible role for IAA production by bacterial epiphytes in the acquisition of nutrients during growth in their natural habitat.Key words: indole-3-acetic acid, Erwinia, tryptophan, indole-3-pyruvic acid, nitrogen.


2004 ◽  
Vol 37 (9) ◽  
pp. 493-498 ◽  
Author(s):  
Ilse Y. Smets ◽  
Kristel Bernaerts ◽  
Astrid Cappuyns ◽  
Ositadinma Ona ◽  
Jos Vanderleyden ◽  
...  

1998 ◽  
Vol 64 (9) ◽  
pp. 3256-3263 ◽  
Author(s):  
M. T. Brandl ◽  
S. E. Lindow

ABSTRACT Erwinia herbicola 299R produces large quantities of indole-3-acetic acid (IAA) in culture media supplemented withl-tryptophan. To assess the contribution of IAA production to epiphytic fitness, the population dynamics of the wild-type strain and an IAA-deficient mutant of this strain on leaves were studied. Strain 299XYLE, an isogenic IAA-deficient mutant of strain 299R, was constructed by insertional interruption of the indolepyruvate decarboxylase gene of strain 299R with the xylE gene, which encodes a 2,3-catechol dioxygenase from Pseudomonas putidamt-2. The xylE gene provided a useful marker for monitoring populations of the IAA-deficient mutant strain in mixed populations with the parental strain in ecological studies. A root bioassay for IAA, in which strain 299XYLE inhibited significantly less root elongation than strain 299R, provided evidence that E. herbicola produces IAA on plant surfaces in amounts sufficient to affect the physiology of its host and that IAA production in strain 299R is not solely an in vitro phenomenon. The epiphytic fitness of strains 299R and 299XYLE was evaluated in greenhouse and field studies by analysis of changes in the ratio of the population sizes of these two strains after inoculation as mixtures onto plants. Populations of the parental strain increased to approximately twice those of the IAA-deficient mutant strain after coinoculation in a proportion of 1:1 onto bean plants in the greenhouse and onto pear flowers in field studies. In all experiments, the ratio of the population sizes of strain 299R and 299XYLE increased during periods of active growth on plant tissue but not when population sizes were not increasing with time.


Sign in / Sign up

Export Citation Format

Share Document