scholarly journals Heterospecific and conspecific associations of trees in lowland tropical forest of New Guinea

2020 ◽  
Vol 21 (9) ◽  
Author(s):  
Agustinus Murdjoko ◽  
MARTHEN MATHIAS JITMAU ◽  
DONY ARISTONE DJITMAU ◽  
RIMA HERLINA SETIAWATI SIBURIAN ◽  
ANTONI UNGIRWALU ◽  
...  

Abstract. Murdjoko A, Jitmau MM, Djitmau DA, Siburian RHS, Ungirwalu A, Wanma AO, Mardiyadi Z, Rumatora A, Mofu WY, Sineri AS, Fatem SM, Worabai D, May NL, Tokede MJ, Warmetan H, Wanggai CB, Wanma JF, Sirami EV, Paembonan JB, Unenor E, Kuswandi R, Lekitoo K, Khayati L, Benu NMH, Tambing J, Saragih ASB. 2020. Heterospecific and conspecific associations of trees in lowland tropical forest of New Guinea. Biodiversitas 21: 4405-4418. The vegetation in the tropical rainforest of New Guinea consists of a large number of species that interact with each other within and among species. While several studies have attempted to reveal the diversity of flora of New Guinea, little is known about plant communities that develop associations. This study aimed to investigate the associations of tree species in lowland tropical forest in New Guinea. The associations depicted in this study were in the form of conspecific associations (among small and large individuals within same species) and heterospecific (among individuals of different species and divided into under and upper story). We established 48 rectangular plots created in Murkim and Teiraplu as part of Pegunungan Bintang Regency, Papua Province. Canonical correspondence analysis (CCA) was used to analyze heterospecific and conspecific associations. The results showed that the understory and upper story vegetation had different patterns of heterospecific association. The understory configured three heterospecific associations, consisting of 5, 13, and 90 species, while the upper story formed four heterospecific associations with 4, 8, 11, and 63 species. The analysis of conspecific associations showed of 149 tree species recorded in the study sites, only 66 species that had both small and large individuals, displaying the pattern of conspecific association. Among them, 41 species had positive associations while 25 species had negative associations. Our findings enrich the knowledge in theoretical ecology of tropical forests, especially in New Guinea.

2016 ◽  
Vol 6 (1) ◽  
pp. 1-12
Author(s):  
Tilak Prasad Gautam ◽  
Tej Narayan Mandal

The disappearance of global tropical forests due to deforestation and forest degradation has reduced the biodiversity and carbon sequestration capacity. In these contexts, present study was carried out to understand the species composition and density in the undisturbed and disturbed stands of moist tropical forest located in Sunsari district of eastern Nepal. Study revealed that the forest disturbance has reduced the number of tree species by 33% and tree density by 50%. In contrary, both number and density of herb and shrub species have increased with forest disturbance.


Koedoe ◽  
1997 ◽  
Vol 40 (2) ◽  
Author(s):  
L. Breebaart ◽  
M. Deutschlander

An analysis of the vegetation of Goedverwacht farm in the mixed bushveld of the Northern Province is presented. Releves were compiled in 33 stratified random sample plots. Eight distinct plant communities were identified by means ofBraun-Blanquet pro-cedures. Detrended correspondence analysis (DCA) was applied to the floristic data set using the computer programme DECORANA (Detrended Correspondence Analysis) to determine a probable environmental gradient and to facilitate in the identification of management units. The computer programme CANOCO (Canonical Correspondence Analysis) was used to apply canonical correspondence analysis (CCA) to the floristic data set. Two management units were determined by means of vegetation ordinations and soil data. A classification, description and ecological interpretation of the plant communities as well as a description of the management units are presented.


2019 ◽  
Vol 35 (4) ◽  
pp. 157-164
Author(s):  
Anna Mrazova ◽  
Katerina Sam

AbstractIn many plants, the defence systems against herbivores are induced, and may be involved in recruiting the natural enemies of herbivores. We used methyl jasmonate, a well-known inducer of plant defence responses, to manipulate the chemistry of Ficus hahliana along a tropical altitudinal gradient in order to test its ability to attract the enemies of herbivores. We examined whether chemical signals from MeJA-treated trees (simulating leaf damage by herbivores) attracted insect enemies in the complex settings of a tropical forest; and how this ability changes with altitude, where the communities of predators differ naturally. We conducted the research at four study sites (200, 700, 1700 and 2700 m asl) of Mt Wilhelm in Papua New Guinea. Using dummy plasticine caterpillars to assess predation on herbivorous insect, we showed that, on average, inducing plant defences with jasmonic acid in this tropical forest increases predation twofold (i.e. caterpillars exposed on MeJA-sprayed trees were attacked twice as often as caterpillars exposed on control trees). The predation rate on control trees decreased with increasing altitude from 20.2% d−1 at 200 m asl to 4.7% d−1 at 2700 m asl. Predation on MeJA-treated trees peaked at 700 m (52.3% d−1) and decreased to 20.8% d−1 at 2700 m asl. Arthropod predators (i.e. ants and wasps) caused relatively more attacks in the lowlands (200–700 m asl), while birds became the dominant predators above 1700 m asl. The predation pressure from birds and arthropods corresponded with their relative abundances, but not with their species richness. Our study found a connection between chemically induced defence in plants and their attractivity to predators of herbivorous insect in the tropics.


2021 ◽  
Author(s):  
Warren Daniel ◽  
Clément Stahl ◽  
Benoît Burban ◽  
Jean-Yves Goret ◽  
Jocelyn Cazal ◽  
...  

<p>Tropical forests are the most productive terrestrial ecosystems, global centres of biodiversity and important participants in the global carbon and water cycles. The Amazon, which is the most extensive tropical forest, can contain more than 600 trees (diameter at breast height above 10 cm) and up to 200 tree species in only one hectare of forest. In upland forest, tropical soils are known to be a methane (CH<sub>4</sub>) sink and a weak source of nitrous oxide (N<sub>2</sub>O), which are both major greenhouse gases (GHG). Most of researches on GHG fluxes have been conducted on the soil compartment but recent works reported that tree stems of some tropical forests can be a substantial source of CH<sub>4</sub> and, a to lesser extend of N<sub>2</sub>O. Tropical tree stems can act as conduits of soil-produced GHG but biophysical mechanisms controlling GHG fluxes and differences among tree species are not yet fully understood.</p><p>In order to quantify CH<sub>4</sub> and N<sub>2</sub>O fluxes of different tropical tree species, we took gas samples in 101 mature tree stems of twelve species with the manual chamber technique during the wet season 2020, in a French Guiana forest. Tree species were selected because of their abundance and their habitat preference. We chose trees belonging to two contrasted forest habitats, the hill-top and hill-bottom, which are respectively characterized by aerobic conditions and seasonal anaerobic conditions. Simultaneously with sampling GHG, we measured bark moisture and tree diameter. Four tree species were found in both habitats whereas the eight others were only present in one of these two habitats.</p><p>Among the 101 tree stems, 78.6% were net sources of CH<sub>4</sub> with a greater proportion in hill-bottom than hill-top. Overall, stem CH<sub>4</sub> fluxes were significantly and positively correlated with the wood density (χ<sup>2</sup> = 28.0; p < 0.01; N = 75) but neither with the habitat, bark moisture or tree size. We found a significant effect of the tree species on stem CH<sub>4</sub> fluxes (F = 3.7, p < 0.001) but no interactions between the tree species and habitats.</p><p>Among 43.0% of the stem N<sub>2</sub>O fluxes that were different from zero, half were from trees that were net sources of N<sub>2</sub>O mainly located in hill-top. Stem N<sub>2</sub>O fluxes are not significantly correlated with habitat, as also with the tree size, wood density or bark moisture. Unlike stem CH<sub>4</sub> fluxes, tree species did not significantly influence stem N<sub>2</sub>O fluxes.</p><p>Our study revealed that, in tropical forest, spatial variations in GHG fluxes would not only depend on soil water conditions, but also on tree species. Specific tree traits such as the wood density can favour stem CH<sub>4</sub> emissions by providing more or less effective pore space for CH<sub>4</sub> diffusion but seems to have a limited influence on stem N<sub>2</sub>O fluxes maybe because of the lower diffusive and ebullitive transport of N<sub>2</sub>O compared to CH<sub>4</sub>. Further investigation linking tree species traits and tree GHG fluxes are, however, necessary to elucidate the processes and mechanisms behind tree CH<sub>4</sub> and N<sub>2</sub>O exchanges.</p>


2020 ◽  
Vol 38 (4) ◽  
pp. 216-219
Author(s):  
Carlos D. Cárdenas ◽  
Alejandro Calderón ◽  
Lina Guevara ◽  
Claudia Lucumí ◽  
Camila Pizano

1990 ◽  
Vol 55 ◽  
Author(s):  
R. Keymeulen ◽  
H. Beeckman

Relations  between plant communities and environment were investigated in an ecological  study in three woodlands in the south of Flanders, Belgium. The vegetation  was sampled and three environmental variables (light penetration, chemical  composition of the soil and species composition of the tree and shrub layer)  were measured. By application of canonical correspondence analysis (CCA),  relations between the vegetation and the environmental variables could be  evaluated. The percentage of Fagus sylvatica in the basal area seemed to be the most decisive environmental  variable determining the presence of plant communities. It could be derived  as well that CCA can be a very useful technique for the determination of the  indicator values of the species for their environment.


2021 ◽  
Vol 109 (4) ◽  
pp. 1858-1872
Author(s):  
Paul‐Camilo Zalamea ◽  
Carolina Sarmiento ◽  
A. Elizabeth Arnold ◽  
Adam S. Davis ◽  
Astrid Ferrer ◽  
...  

2020 ◽  
Vol 98 (4) ◽  
pp. 441-467
Author(s):  
Consuelo Medina-García ◽  
Alejandro Velázquez ◽  
Joaquin Giménez de Azcárate ◽  
Miguel Ángel Macías-Rodríguez ◽  
Alejandra Larrazábal ◽  
...  

Background: seasonally dry tropical forests are considered critical and important ecosystems because they harbor exceptional biological diversity. Mexico lacks sound phytosociological studies of Seasonally Dry Tropical Forest and Michoacán is no exception. The present study may be regarded the first phytosociological in most of the Mexican pacific coast where seasonally dry tropical forests occurs. Questions/Objective: We aimed at describing the representative plant associations of the seasonally dry tropical forest, distributed on western Michoacán and to provide a sintaxonomic classification framework based on the floristic differentiation of the recognized communities and highlight its phytocenotic diversity. Study site and dates: Estado de Michoacán; 20 years. Methods: A total of 82 phytosociological inventories were conducted. Data were submitted to multivariate two-way indicator species analyses to depict plant communities and their ecological affinities. Results: From its analysis and interpretation, nine plant groups were differentiated, of which all but one was given the rank of association, which are Lysilomo acapulcensis–Heliocarpetum terebinthinacei, Ceibo aesculifoliae–Lysilometum divaricatae, Caesalpinio platylobae-Cordietum elaeagnoidis, Cochlospermo vitifolii-Lueheetum candidae, Lysilomo divaricatae-Cordietum elaeagnoidis; Stenocereo quevedonis-Cordietum selerianae, Guazumo ulmifoliae-Cordietum elaeagnoidis¸ Lonchocarpo huetamoensis-Cordietum elaeagnoidis and the community of Spondias purpurea-Cochlospermum vitifolium. Conclusions: Comparative floristic and structural profiles among plant communities permitted us to distinguish their bioclimatic relationships. Diagnostic species representative of all plant associations were selected and used for sintaxonomic nomenclature.  Plant associations were finally array along bioclimatic and altitudinal gradients and showed in arranged phytosociological tables. The plant association/community’descriptions permitted to compare structural physiognomy, floristic composition, ecological affinities, distribution patterns and bioclimatic liaison among them.


Sign in / Sign up

Export Citation Format

Share Document