scholarly journals Desain Sensor Serat Optik Sederhana untuk Mengukur Konsentrasi Larutan Gula dan Garam Berbasis Pemantulan dengan Menggunakan Konfigurasi Jarak Cermin-Fiber Optik Tetap

2016 ◽  
Vol 3 (02) ◽  
pp. 163
Author(s):  
Arrini Nurul M ◽  
Ahmad Marzuki ◽  
Mohtar Yunianto

<span>A simple method to measure a solution refractive index using fixed mirror refractive optical <span>fiber sensor has been investigated. The solution used are sugar and salt solution, with concen<span>tration varies from 1M to 5M. The diameter of polymer optical fiber used is 0.5 mm and light <span>source used is LED (λ=676 nm). The sensor work based on light intensity modulation, sub <span>jected to mechanical structure change of the fiber due to an applied force. The result showed <span>that the concentration of sugar and salt linearly are related with their refractive indeces <span>(R<span>2<span>=0,95006) and (R<span>2<span>=0,99858).</span></span></span></span></span></span><br /></span></span></span></span></span>

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 81
Author(s):  
Chuanxin Teng ◽  
Rui Min ◽  
Jie Zheng ◽  
Shijie Deng ◽  
Maosen Li ◽  
...  

The simple and highly sensitive measurement of the refractive index (RI) of liquids is critical for designing the optical instruments and important in biochemical sensing applications. Intensity modulation-based polymer optical fiber (POF) RI sensors have a lot of advantages including low cost, easy fabrication and operation, good flexibility, and working in the visible wavelength. In this review, recent developments of the intensity modulation POF-based RI sensors are summarized. The materials of the POF and the working principle of intensity modulation are introduced briefly. Moreover, the RI sensing performance of POF sensors with different structures including tapered, bent, and side-polished structures, among others, are presented in detail. Finally, the sensing performance for different structures of POF-based RI sensors are compared and discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeong-Min Kim ◽  
Dae Hong Jeong ◽  
Ho-Young Lee ◽  
Jae-Hyoung Park ◽  
Seung-Ki Lee

AbstractA simple optical fiber sensor based on localized surface plasmon resonance was constructed for direct and rapid measurement of thyroglobulin (Tg). Specific tests for Tg in patients that have undergone thyroidectomy are limited because of insufficient sensitivity, complicated procedures, and in some cases, a long time to yield a result. A sensitive, fast, and simple method is necessary to relieve the psychological and physical burden of the patient. Various concentrations of Tg were measured in a microfluidic channel using an optical fiber sensor with gold nanoparticles. The sensor chip has a detection limit of 93.11 fg/mL with no specificity for other antigens. The potential applicability of the Tg sensing system was evaluated using arbitrary samples containing specific concentrations of Tg. Finally, the sensor can be employed to detect Tg in the patient’s serum, with a good correlation when compared with the commercial kit.


2018 ◽  
Vol 36 (4) ◽  
pp. 1118-1124 ◽  
Author(s):  
Charusluk Viphavakit ◽  
Sinead O Keeffe ◽  
Minghong Yang ◽  
Stefan Andersson-Engels ◽  
Elfed Lewis

2021 ◽  
Author(s):  
Rune Inglev ◽  
Emil Møller ◽  
Niclas Atzen ◽  
Jonas Højgaard ◽  
Jakob Janting ◽  
...  

2016 ◽  
Vol 14 (5) ◽  
pp. 050604-50608
Author(s):  
Zaihang Yang Zaihang Yang ◽  
Hao Sun Hao Sun ◽  
Tingting Gang Tingting Gang ◽  
Nan Liu Nan Liu ◽  
Jiacheng Li Jiacheng Li ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 522
Author(s):  
Yu-Jun Zhang ◽  
Jin-Cherng Hsu ◽  
Jia-Huey Tsao ◽  
Yung-Shin Sun

A bare optical fiber-based biosensor is proposed for measuring the refractive index of different liquids and the binding kinetics of biomolecules to the sensor surface. This optical fiber sensor is based on the Kretschmann’s configuration to attain total internal reflection (TIR) for surface plasmon resonance (SPR) excitation. One end of the bare optical fiber is coated with a gold film. By guiding the light source from the other end into the optical fiber, the light is reflected from the gold-deposited end and the surface evanescent wave is excited in the gold film-transparent material interface. Methanol and ethanol solutions with different refractive indices are used for measuring the corresponding changes in the peak values of the spectra and calculating the corresponding sensitivities. These values are experimentally determined to be in the order of 10−4~10−5 refractive index unit (RIU). Binding of proteins onto the sensor surface is also monitored in real time to obtain the binding kinetics. We believe that, in the future, this optical fiber sensor can serve as a useful biosensor for in situ measurement of allergens, antibody–antigen interactions, and even circulating tumor cells in the blood.


2020 ◽  
Vol 20 (5) ◽  
pp. 2518-2525
Author(s):  
Arnaldo G. Leal-Junior ◽  
Leticia M. Avellar ◽  
Camilo A. R. Diaz ◽  
Maria Jose Pontes ◽  
Anselmo Frizera

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
A. Arifin ◽  
Nelly Agustina ◽  
Syamsir Dewang ◽  
Irfan Idris ◽  
Dahlang Tahir

This research discusses the polymer optical fiber sensor for respiratory measurements. The infrared LED that produces light will propagate along the polymer optical fiber which will be received by the phototransistor and the differential amplifier. The output voltage in the form of an analog signal will be converted to a digital signal by the Arduino Uno microcontroller and displayed on the computer. The polymer optical fiber sensor is installed on the corset using a variety of configuration (straight, sinusoidal, and spiral), placed in the abdomen, and a variety of positions (abdomen, chest, and back) using only a spiral configuration. While doing the inspiration, the stomach will be enlarged so that the optical fiber sensor will have strain. The strain will cause loss of power, the resulting light intensities received by the phototransistor are reduced, and the output voltage on the computer decreases. The result shows that the highest voltage amplitudes were in the spiral configuration placed in the abdominal position for slow respiration measurements with the highest range, sensitivity, and resolution which are 0.119 V, 0.238 V/s, and 0.004 s, respectively. The advantages of our work are emphasized on measurement system simplicity, low cost, easy fabrication, and handy operation and can be connected with the Arduino Uno microcontroller and computer.


Sign in / Sign up

Export Citation Format

Share Document