scholarly journals Efficient Use of Satellite Gravity Anomalies for mapping the Great Sumatran Fault in Aceh Province

2019 ◽  
Vol 9 (02) ◽  
pp. 61
Author(s):  
Muhammad Yanis ◽  
Marwan Marwan ◽  
Nazli Ismail

<p>Gravity Satellite has been widely used in tectonic studies and regional of geological mapping. The Satellite Gravity data are provided free by Scripps Institution of Oceanography, University of California San Diego. The data are acquired by GEOSAT and ERS-1 satellites with a 1.5 km resolution for one pixel. For a further application, the tilt derivative analytic technique was used in order to enhance linear trends of the geological structure revealed by the Bouguer anomalies. The method is represented by the value of an angle between the total horizontal and vertical derivative from the gravity data. The results show that the tilt derivative calculation has been able to map clearly some geological structures on the north of Sumatra i.e., the Aceh and the Seulimeuem segments, as well as some local faults around them. On the other hand, Banda Aceh as the capital city of Aceh Province and Pidie District is dominated by positive values of the tilt derivative anomalies. The data coincide with geological maps of both areas where they are covered by alluvial deposits. Based on the result, it can be concluded that the tilt derivative method is potentially used for quick interpretation of the satellite gravity data.</p>

2012 ◽  
Vol 18 (4) ◽  
pp. 549-563 ◽  
Author(s):  
Vagner G. Ferreira ◽  
Zheng Gong ◽  
Samuel A. Andam-Akorful

GRACE satellite gravity data was used to estimate mass changes within the Volta River basin in West African for the period of January, 2005 to December, 2010. We also used the precipitation data from the Tropical Rainfall Measurement Mission (TRMM) to determine relative contributions source to the seasonal hydrological balance within the Volta River basin. We found out that the seasonal mass change tends to be detected by GRACE for periods from 1 month in the south to 4 months in the north of the basin after the rainfall events. The results suggested a significant gain in water storage in the basin at reference epoch 2007.5 and a dominant annual cycle for the period under consideration for both in the mass changes and rainfall time series. However, there was a low correlation between mass changes and rainfall implying that there must be other processes which cause mass changes without rainfall in the upstream of the Volta River basin.


2021 ◽  
Author(s):  
◽  
Alistair Stronach

<p><b>New Zealand’s capital city of Wellington lies in an area of high seismic risk, which is further increased by the sedimentary basin beneath the Central Business District (CBD). Ground motion data and damage patterns from the 2013 Cook Strait and 2016 Kaikōura earthquakes indicate that two- and three-dimensional amplification effects due to the Wellington sedimentary basin may be significant. These effects are not currently accounted for in the New Zealand Building Code. In order for this to be done, three-dimensional simulations of earthquake shaking need to be undertaken, which requires detailed knowledge of basin geometry. This is currently lacking, primarily because of a dearth of deep boreholes in the CBD area, particularly in Thorndon and Pipitea where sediment depths are estimated to be greatest.</b></p> <p>A new basin depth map for the Wellington CBD has been created by conducting a gravity survey using a modern Scintrex CG-6 gravity meter. Across the study area, 519 new high precision gravity measurements were made and a residual anomaly map created, showing a maximum amplitude anomaly of -6.2 mGal with uncertainties better than ±0.1 mGal. Thirteen two-dimensional geological profiles were modelled to fit the anomalies, then combined with existing borehole constraints to construct the basin depth map. </p> <p>Results indicate on average greater depths than in existing models, particularly in Pipitea where depths are interpreted to be as great as 450 m, a difference of 250 m. Within 1 km of shore depths are interpreted to increase further, to 600 m. The recently discovered basin bounding Aotea Fault is resolved in the gravity data, where the basement is offset by up to 13 m, gravity anomaly gradients up to 8 mGal/km are observed, and possible multiple fault strands identified. A secondary strand of the Wellington Fault is also identified in the north of Pipitea, where gravity anomaly gradients up to 18 mGal/km are observed.</p>


2021 ◽  
Author(s):  
Yan Ming Wang ◽  
Xiaopeng Li ◽  
Kevin Ahlgren ◽  
Jordan Krcmaric ◽  
Ryan Hardy ◽  
...  

&lt;p&gt;For the upcoming North American-Pacific Geopotential Datum of 2022, the National Geodetic Survey (NGS), the Canadian Geodetic Survey (CGS) and the&amp;#160;National Institute of Statistics and Geography of Mexico (INEGI) computed the first joint experimental gravimetric geoid model (xGEOID) on 1&amp;#8217;x1&amp;#8217; grids that covers a region bordered by latitude 0 to 85 degree, longitude 180 to 350 degree east.&amp;#160;xGEOID20 models are computed using terrestrial gravity data, the latest satellite gravity model GOCO06S, altimetric gravity data DTU15, and an additional nine airborne gravity blocks of the GRAV-D project, for a total of 63 blocks. In addition, a digital elevation model in a 3&amp;#8221; grid was produced by combining MERIT, TanDEM-X, and USGS-NED and used for the topographic/gravimetric reductions. The geoid models computed from the height anomalies (NGS) and from the Helmert-Stokes scheme (CGS) were combined using two different weighting schemes, then evaluated against the independent GPS/leveling data sets. The models perform in a very similar way, and the geoid comparisons with the most accurate Geoid Slope Validation Surveys (GSVS) from 2011, 2014 and 2017 indicate that the&amp;#160;relative geoid accuracy&amp;#160;could be around 1-2 cm baseline lengths up to 300 km for these GSVS lines in the United States. The xGEOID20 A/B models were selected from the combined models based on the validation results. The geoid accuracies were also estimated using the forward modeling.&lt;/p&gt;


2011 ◽  
Vol 1 (4) ◽  
pp. 324-332 ◽  
Author(s):  
Robert Tenzer ◽  
Viliam Vatrt ◽  
Luzi Gan ◽  
Ahmed Abdalla ◽  
Nadim Dayoub

Combined approach for the unification of levelling networks in New ZealandThe unification of levelling networks in New Zealand is done using a combined approach. It utilises the joint levelling network adjustment and the geopotential-value approach. The levelling and normal gravity data are used for a joint adjustment of the levelling networks at the South and North Islands of New Zealand while fixing the heights of tide gauges in Dunedin and Wellington. The results reveal a good quality of levelling data; the STD of residuals is 2 mm for the whole country. The comparison of the newly determined and original normal-orthometric heights confirms the presence of large local vertical datum offsets and systematic levelling errors. Since the geopotential-value approach is based on the Molodensky's theory, the newly adjusted normal-orthometric heights are converted to the normal heights. This conversion is based on applying the cumulative normal to normal-orthometric height correction computed from levelling and gravity anomaly data. In the absence of the observed gravity data the gravity anomalies along levelling lines are generated fromEGM2008. The GPS-levelling data and EGM2008 are used to estimate the average offsets of the jointly adjusted levelling networks at the North and South Islands with respect to World Height System defined by the adopted geoidal geopotential value of W0 = 62636856 ± 0.5 m2s-2; the estimated offsets are 10.6 cm and 27.5 cm.


1943 ◽  
Vol 4 (12) ◽  
pp. 271-275

Walcot Gibson was born at Bromsgrove, Worcestershire, on 24 August 1864. His father was a bank manager from the north country and his mother was Cornish, and they had three sons and one daughter. Gibson was educated at the Bromsgrove School and about 1882 went to Mason College, Birmingham, now the University of Birmingham. Charles Lapworth who had distinguished himself by his great researches in the south of Scotland had just been appointed to the chair of Geology at Mason College and thirty-one years later (1913) he records that Gibson was his first geological pupil. His interest in geology and geological mapping was developed by intimate contact with Lapworth and was sustained by a coterie of ardent amateur geologists, among them Joseph Landon, Fred Cullis and C. J. Gilbert. This period clearly determined Gibson’s choice of a career. After a course at the Royal College of Science he set out in 1889 on Lapworth’s advice for South Africa where he was engaged for two years on mineral surveys in the Rand goldfields and elsewhere. From there he moved to East Africa where he was engaged for another two years on mineral surveys for the East Africa Company. He returned to this country an experienced geologist and surveyor and in 1893 he joined H.M. Geological Survey in which service he remained for thirty-two years until his retirement in 1925. This was an important period in the history of the Geological Survey for owing to strong representations that the old Survey had become obsolete both in topography and geology, the House of Commons in 1891 sanctioned a resurvey of the great South Wales Coalfield on the scale of six inches to the mile. The first mapping of that field initiated by Logan and de la Beche was on the one-inch scale and was completed about 1845, the year in which the Geological Survey was transferred from the Board of Ordnance. The enormous developments which had taken place since the original survey had far outstripped the knowledge of the geological structure of the field and new information had become urgently necessary.


2017 ◽  
Author(s):  
Nelson de Lima Ribeiro Filho ◽  
Raissa Moraes Baldez ◽  
Boris Chaves Freimann

Author(s):  
A. Tugi ◽  
A. H. M. Din ◽  
K. M. Omar ◽  
A. S. Mardi ◽  
Z. A. M. Som ◽  
...  

The Earth’s potential information is important for exploration of the Earth’s gravity field. The techniques of measuring the Earth’s gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE) has introduced a better way in providing the information on the Earth’s gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs) has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth’s gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R<sup>2</sup>) and the root mean square error (RMSE) of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R<sup>2</sup> and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.


2020 ◽  
Vol 22 ◽  
pp. 29-32
Author(s):  
Sushant Sapkota ◽  
Pashupati Gaire ◽  
Kabi Raj Paudyal

The study area represents a small part of the Lesser Himalaya in western Nepal and lies about 346 km west from Kathmandu. It covers 250 km area representing some parts of Gulmi and Baglung districts. The area was selected for the present study on the impression from the previous geological map that has showed some metallic mineral resources like iron, copper and lead in the region. Similarly, studies reveal that there is very complicated geological structure which raised the interest for the study. Main objective of the study was to prepare a geological map of the area in a scale of 1:25,000 and study the possible mineral deposits. An extensive geological mapping was carried out in the field covering at one data within one centimetre of the map scale and large number of samples was collected for the petrographic as well as ore genesis studies. The rocks of the region were mapped under two geological units as the Nourpul Formation (older) and the Dhading Dolomite (younger).  There are a series of folds in the area. From regional to micro-scale all folds are trending towards east-west. The Badi Gad Fault and the Harewa Khola Thrust are the regional scale thrust mapped in the area. The Badi Gad is considered as a strike-slip in nature. The Harewa Khola Thrust is probably an imbricate fault. It has propagated to the north which is out of sequence in nature. Some metallic minerals like copper and iron along with old working mines were observed during the study. Occurrences of copper and iron mineralization has been mapped and described. Present study revealed that copper mineralization is limited within the veins and boudinage forms as hydrothermal deposit while the iron is tabular and syngenetic in nature.


1980 ◽  
Vol 17 (11) ◽  
pp. 1506-1516 ◽  
Author(s):  
R. A. Gibb ◽  
M. D. Thomas

A gravity map compiled from observations made on the frozen surface of Great Slave Lake shows that the positive gravity anomaly associated with the Yellowknife greenstone belt extends offshore into the North Arm of the lake. On the western shore of Yellowknife Bay the axis of the anomaly coincides with mafic volcanic rocks of the Kam Formation. Offshore the axis continues southwards for about 10 km to the West Mirage Islands where it takes a dramatic turn to the southeast and continues for a further 60 km to the Outer Whaleback Rocks. Using the geology and rock density determinations on land for control, a three-dimensional geological model comprising a large number of prismatic blocks was derived from the gravity anomalies. In the model the simplifying assumption has been made that the greenstone belt is everywhere floored by granodiorite similar to the adjacent Western and South-east granodiorites. According to the model, mafic volcanic rocks of the Kam Formation are generally 1–3 km thick with a maximum thickness of 7 km at the mouth of Yellowknife Bay. Greywacke and mudstone of the Burwash Formation vary in thickness from 1 to 3 km. Locally these sedimentary rocks attain a thickness of 8 km but this is probably an overestimated value as they may very well be underlain by volcanic rocks of the Kam Formation. The presence of a third pluton of granodiorite flanking the belt to the southwest is also inferred from the gravity data. Previous seismic work indicated a greenstone basin with an average thickness of about 10 km. However, reexamination of the seismic records suggests that weak arrivals interpreted as originating from the base of the greenstone belt are more likely to be pulses associated with earlier arrivals.


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. J25-J32 ◽  
Author(s):  
William J. Hinze ◽  
Carlos Aiken ◽  
John Brozena ◽  
Bernard Coakley ◽  
David Dater ◽  
...  

The North American gravity database as well as data-bases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective “ellipsoidal” to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid.


Sign in / Sign up

Export Citation Format

Share Document