Cenozoic Magmatism in the South China Basin: Decompression Melting and Implications of an Enriched Mantle Source: ABSTRACT

AAPG Bulletin ◽  
1990 ◽  
Vol 74 ◽  
Author(s):  
Martin F. J. Flower, Kan Tu, Ming Z
2020 ◽  
Vol 132 (11-12) ◽  
pp. 2295-2317 ◽  
Author(s):  
Yujia Xin ◽  
Jianhua Li ◽  
Lothar Ratschbacher ◽  
Guochun Zhao ◽  
Yueqiao Zhang ◽  
...  

Abstract The evolution of the South China continental crust and its linkage to the assembly and rifting of eastern Gondwana are key issues in the understanding of the early Paleozoic evolution of eastern Asia. We report U-Pb zircon ages and geochemical and Lu-Hf isotopic data for the South Fufang and Yingshang granitoids and the Mayuan diabases from the Wuyishan of eastern South China. The zircons yielded U-Pb ages of ca. 414–404 and ca. 409–401 Ma for the granitoids and diabases, respectively. Petrographic and geochemical features indicate that the granitoids are peraluminous A-type granites, expressed by high Ga/Al ratios and high Zr, Nb, Ce, Y, and rare earth element contents. They show negative zircon εHf(t) values (–15.4 to –5.8), consistent with the derivation from a crustal source. The granitoids likely originated from partial melting of dry granulite residues in the lower crust. The diabases show depletion in Ti, and negative correlations between FeOt and Mg#, and SiO2 and TiO2/FeOt, reflecting clinopyroxene, olivine, and Fe-Ti oxide fractionation. Their negative zircon εHf(t) values (–4.5 to –0.4) indicate an ancient enriched-mantle origin. The diabases likely originated from partial melting of a sub-continental lithospheric mantle. We interpret these A-type granitoids and diabases as post-orogenic, formed during extensional collapse of thickened crust. Their generation indicates that South China experienced crustal extension during the Early Devonian. The extension occurred coevally with global rifting that led to the separation of the continental blocks of eastern Asia from eastern Gondwana, which was associated with the Early Devonian opening of the paleo–Tethys Ocean.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 410 ◽  
Author(s):  
Wei Wang ◽  
Fengyou Chu ◽  
Xichang Wu ◽  
Zhenggang Li ◽  
Ling Chen ◽  
...  

The nature of upper mantle is important to understand the evolution of the South China Sea (SCS); thus, we need better constrains on its mantle heterogeneity. Magma water concentration is a good indicator, but few data have been reported. However, the rarity of glass and melt inclusions and the special genesis for phenocrysts in SCS basalts present challenges to analyzing magmatic water content. Therefore, it is possible to estimate the water variations through the characteristics of partial melting and magma crystallization. We evaluated variations in Fe depletion, degree of melt fractions, and mantle source composition along the fossil spreading ridge (FSR) using SCS basalt data from published papers. We found that lava from the FSR 116.2° E, FSR 117.7° E, and non-FSR regions can be considered normal lava with normal water content; in contrast, lava from the FSR 117° E-carbonatite and 114.9–115.0° E basalts have higher water content and show evidence of strong Fe depletion during the fractional crystallization after elimination of the effects of plagioclase oversaturation. The enriched water in the 117° E-carbonatite basalts is contained in carbonated silicate melts, and that in the 114.9–115.0° E basalts results from mantle contamination with the lower continental crust. The lava from the 117° E-normal basalt has much lower water content because of the lesser influence of the Hainan plume. Therefore, there must be a mantle source compositional transition area between the southwestern and eastern sub-basins of the SCS, which have different mantle evolution histories. The mantle in the west is more affected by contamination with continental materials, while that in the east is more affected by the Hainan mantle plume.


Author(s):  
Shengping Qian ◽  
Esteban Gazel ◽  
Alexander R. L. Nichols ◽  
Hao Cheng ◽  
Le Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document