Application of sequence stratigraphy to carbonate reservoir prediction, Early Palaeozoic eastern Warburton Basin, South Australia: ABSTRACT

AAPG Bulletin ◽  
1996 ◽  
Vol 80 ◽  
Author(s):  
Xiaowen Sun, William J. Stuart
2011 ◽  
Author(s):  
Lifeng Liu ◽  
Sam Zandong Sun ◽  
Haiyang Wang ◽  
Haijun Yang ◽  
Jianfa Han ◽  
...  

2021 ◽  
Author(s):  
Tongcui Guo ◽  
Lirong Dou ◽  
Guihai Wang ◽  
Dongbo He ◽  
Hongjun Wang ◽  
...  

Abstract Carbonate reservoirs are highly heterogeneous and poor in interwell connectivity. Therefore, it is difficult to predict the thin oil layers and water layers inside the carbonate reservoir with thickness less than 10 ft by seismic data. Based on the petrophysical analysis with core and well logging data, the carbonate target layers can be divided into two first level lithofacies (reservoir and non-reservoir) and three second-level lithofacies (oil, water and non-reservoir) by fluids. In this study, the 3D lithofacies probabilistic cubes of the first level and second-level level lithofacies were constructed by using the simulation method of well-seismic cooperative waveform indication. Afterwards, constrained by these probability cubes, the prestack geostatistical inversion was carried out to predict the spatial distribution of thin oil layers and water layers inside the thin reservoir. The major steps include: (1) Conduct rock physics analysis and lithofacies classification on carbonate reservoirs; (2) Construct the models constrained by two-level lithofacies; (3) Predict thin reservoirs in carbonates by prestack geostatistical inversion under the constraint of two-level lithofacies probability cubes. The prediction results show that through the two-level lithofacies-controlled prestack geostatistical inversion, the vertical and horizontal resolution of thin oil layers and water layers in carbonate reservoirs has been improved significantly, and the accuracy of thin oil reservoir prediction and the analyzing results of interwell oil layer connectivity have been improved significantly. Compared with the actual drilling results, the prediction results by 3D multi-level lithofacies-controlled inversion are consistent with the drilling results, and the details of thin carbonate reservoirs can be predicted. It has been proved that this method is reasonable and feasible. With this method, the prediction accuracy on thin reservoirs can be improved greatly. Compared with the conventional geostatistical inversion results, the 3D multi-level lithofacies-controlled inversion can improve significantly the vertical and horizontal resolution of prediction results of thin reservoirs and thin oil layers, and improve the reliability of interwell prediction results. For the prediction of thin carbonate reservoirs with serious heterogeneity, the 3D multi-level lithofacies-controlled inversion is an effective prediction method.


1998 ◽  
Vol 38 (1) ◽  
pp. 380 ◽  
Author(s):  
X.W. Sun

The Early Palaeozoic eastern Warburton Basin unconformably underlies the Cooper and Eromanga Basins. Four seismic sequence sets (I−IV) are interpreted. Among them, sequence set II is subdivided into four Cambro-Ordovician depositional sequences. Sequence 1, the oldest, is a shallow shelf deposit that occurs only in the Gidgealpa area. Sequences 2 and 3 were deposited in a wider area; from west to east, environments varyied from deep siliciclastic ramp, carbonate inner-shelf, peritidal, shelf edge, and slope-to-basin. Their seismic reflection configurations are high-amplitude, regionally parallel-continuous, layered patterns, locally mounded geometry, as well as divergent-fill patterns. Sequence 4, the youngest, was deposited in a mixed siliciclastic and carbonate, storm-dominate shelf. Its seismic reflection configurations are moderate amplitude, parallel-layered patterns, decreasing in amplitude upwards.Boundaries between the four sequences generated good secondary porosity in the carbonates. Karst development is interpreted to have generated much of this porosity in shelf and peritidal carbonates, and carbonate build-ups. Shoal-water sandy limestone and calcareous sandstone of Sequence 4 may be other potential reservoir rocks. Potential source rocks comprise mudstone and shale of slope and basin lithofacies. There are two kinds of stratigraphic trap. One is in Sequences 2 and 3, associated with high-relief carbonate build-ups encased in lagoonal mudstone and shelf edge sealed by transgressive siltstone and shale. The other is a transgressive marine shale enclosing porous dolostone of the karstified Sequence 1. In addition, petroleum may have migrated from Permian source rocks of the Cooper Basin to karstified carbonate reservoirs of the Warburton Basin at unconformities.


Sign in / Sign up

Export Citation Format

Share Document