Face Lateral Shear Resistance of One-Row Multistaple Joints in Oriented Strandboard

2013 ◽  
Vol 63 (5-6) ◽  
pp. 207-212 ◽  
Author(s):  
Samet Demirel ◽  
Jilei Zhang ◽  
David Jones ◽  
Shane Kitchens ◽  
William V. Martin ◽  
...  
Author(s):  
Aysha M Zaneeb ◽  
Rupen Goswami ◽  
C V R Murty

An analytical method is presented to estimate lateral shear strength (and identify likely mode and location of failure) in reinforced concrete (RC) cantilever columns of rectangular cross-section under combined axial force, shear force and bending moment. Change in shear capacity of concrete with flexural demand at a section is captured explicitly and the shear resistance offered by concrete estimated; this is combined with shear resistance offered by transverse and longitudinal reinforcement bars to estimate the overall shear capacity of RC columns. Shear–moment (V-M) interaction capacity diagram of an RC column, viewed alongside the demand diagram, identifies the lateral shear strength and failure mode. These analytical estimates compare well with test data of 107 RC columns published in literature; the test data corresponds to different axial loads, transverse reinforcement ratios, longitudinal reinforcement ratios, shear span to depth ratios, and loading conditions. Also, the analytical estimates are compared with those obtained using other analytical methods reported in literature; in all cases, the proposed method gives reasonable accuracy when estimating shear capacity of RC columns.  In addition, the method provides insights into the shear resistance mechanism in RC columns under the combined action of P-V-M, and it is simple to use.


1986 ◽  
Vol 14 (4) ◽  
pp. 264-291
Author(s):  
K. L. Oblizajek ◽  
A. G. Veith

Abstract Treadwear is explained by specific mechanical properties and actions of tires. Rubber shear stresses in the contact zone between the tire and the road become large at large slip angles. When normal stresses are insufficient to prevent sliding at the rear of the footprint, wear occurs at a rate that depends on test severity. Two experimental approaches are described to relate treadwear to tire characteristics. The first uses transducers imbedded in a simulated road surface to obtain direct measurements of contact stresses on the loaded, freely-rolling, steered tires. The second approach is developed with the aid of a simple carcass, tread-band, tread-rubber tire model. Various tire structural configurations; characterized by carcass spring rate, edgewise flexural band stiffness, and tread rubber shear stiffness; are simulated and lateral shear stress response in the contact zone is determined. Tires featuring high band stiffness and low carcass stiffness generate lower lateral shear stress levels. Furthermore, coupling of tread-rubber stiffness and band flexural rigidity are important in determining level of shear stresses. Laboratory measurements with the described apparatus produced values of tread-band bending and carcass lateral stiffness for several tire constructions. Good correlation is shown between treadwear and a broad range of tire stiffness and test course severities.


2011 ◽  
Vol 14 (1) ◽  
pp. 180-196
Author(s):  
A M Elshihy ◽  
H A ShehabEldeen ◽  
O Shaalan ◽  
R S Mahmoud

2016 ◽  
Author(s):  
Ann Bykerk-Kauffman ◽  
◽  
Susanne U. Janecke ◽  
Cavan S. Ewing ◽  
Mark J. Brenneman ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 41
Author(s):  
Irati Malkorra ◽  
Hanène Souli ◽  
Ferdinando Salvatore ◽  
Pedro Arrazola ◽  
Joel Rech ◽  
...  

Drag finishing is a widely used superfinishing technique in the industry to polish parts under the action of abrasive media combined with an active surrounding liquid. However, the understanding of this process is not complete. It is known that pyramidal abrasive media are more prone to rapidly improving the surface roughness compared to spherical ones. Thus, this paper aims to model how the shape of abrasive media (spherical vs. pyramidal) influences the material removal mechanisms at the interface. An Arbitrary Lagrangian–Eulerian model of drag finishing is proposed with the purpose of estimating the mechanical loadings (normal stress, shear stress) induced by both abrasive media at the interface. The rheological behavior of both abrasive slurries (media and liquid) has been characterized by means of a Casagrande direct shear test. In parallel, experimental drag finishing tests were carried out with both media to quantify the drag forces. The correlation between the numerical and experimental drag forces highlights that the abrasive media with a pyramidal shape exhibits a higher shear resistance, and this is responsible for inducing higher mechanical loadings on the surfaces and, through this, for a faster decrease of the surface roughness.


Sign in / Sign up

Export Citation Format

Share Document