scholarly journals Zinc speciation in soil solution of selected Poland’s agricultural soils

2014 ◽  
Vol 101 (2) ◽  
pp. 147-152
Author(s):  
Beata Rutkowska ◽  
Wiesław Szulc ◽  
Jan Łabętowicz
Author(s):  
Ann-Mari Fransson

Incidental P losses from non-point sources may contribute to eutrophication and to decreased soil fertility. These incidents have been related to heavy rainfall on freshly fertilized agricultural soils and little is known about such incidents on more natural soils or in forests. The aim of this work is to determine if incidents of high P leaching also occur in spruce forests, and if such incidents are of significance in P cycling. We found a peak in the mineral soil solution showing that single events of high P leaching occur. The orthophosphate concentration in the Bf-horizon of the 80-year old spruce forest peaked in the autumn of the second year of a continuous monitoring. The concentration increased by more than 85 times compared to the highest concentration obtained earlier during the sampling. The amount leached during this 6 months peak is 10 times higher than the average annual leaching. This P leaching might be due to a combination of high P deposition/through-fall and a high anion exchange with dissolved-organic-carbon and Cl-. We suggest that single events of high sub-surface P leaching may contribute to the overall P leaching, and might increase with the global warming as more DOC is expected to be released to the soil solution.


2018 ◽  
Vol 16 (38) ◽  
pp. 139-146
Author(s):  
Asmaa Ahmad Aziz

The research aims to evaluate the radioactivity in elected samples of cereals and legume which are wide human consumption in Iraq using Nuclear Track Detectors (NTDs) model CN-85.The samples were prepared scientifically according to references in this field. After 150 days of exposure, the detector were collected and chemically treated according to scientific sources (etching chemical), nuclear effects have been calculated using the optical microscope.Radon (222Rn) concentration and uranium (238U) were calculated in unit Bq/m3 and (ppm), the results indicate that the highest concentration of radon and uranium was in yellow corn where the concentration of radon was 137.17×102 Bq/m3 and uranium concentration 2.63 (ppm). The lowest concentration of radon and uranium was in Oats, where the concentration of radon was 24.27×102 Bq/m3, and uranium concentration 0.466 (ppm), concentrations of other cereals and legumes varied between these two values. These different in radon and uranium concentrations due to different in geological nature of the different agricultural soils, and the different absorption of plant roots for certain elements present in the soil solution. These values for the concentration of radon and uranium for cereals and legumes are within the permitted globally and as issued by the International Atomic Energy Agency (IAEA).


2011 ◽  
Vol 57 (No. 7) ◽  
pp. 307-314 ◽  
Author(s):  
J. Matula

Phosphorus concentration in the soil solution of agricultural soils should be a consensus of the agronomic and environmental aspect. Data from literary sources are inconsistent if the method of soil solution extraction from the soil and the method of phosphorus detection are not indicated. In the present paper a simplified procedure of soil solution extraction is used that is derived from the need of water to attain saturated soil paste. Based on barley cultivation in a plant growth chamber on 72 different soils the relationship between P concentration in simulated soil solution and the response of test plant (spring barley) was evaluated. Three approaches were used to derive an adequate P concentration in soil solution. Based on the diagnostics of P content in barley the following adequate P concentrations in soil solution were derived: 0.23&ndash;0.86 ppm P for colorimetry and 0.9&ndash;1.75 ppm P for ICP-AES. Using the concept of the boundary line of yield the critical P concentration in soil solutions was 0.8 ppm P for colorimetry and 1.3 ppm P for ICP-AES. The concept of the boundary line of P efficiency index enabled to define P concentrations in soil solution that can be considered as the lower limits of suitability from the agronomic aspect:<br />0.15 ppm P in simulated soil solution for colorimetry and 0.7 ppm P for ICP-AES.


2011 ◽  
Vol 48 (3) ◽  
pp. 337-343 ◽  
Author(s):  
Nao KAMEI-ISHIKAWA ◽  
Shigeo UCHIDA ◽  
Keiko TAGAMI ◽  
Naoya SATTA

2015 ◽  
Vol 12 (7) ◽  
pp. 5697-5723 ◽  
Author(s):  
M. C. Hernandez-Soriano ◽  
J. C. Jimenez-Lopez

Abstract. The bioavailability of metals in soil is only partially explained by their partition among the solid and aqueous phase and is more related to the characterization of their speciation in the soil solution. The organic ligands in solution that largely determine metal speciation involve complex mixtures and the characterization of fluorescence components of dissolved organic matter (DOM) can identify pools of molecules that participate in metal speciation, this being essential for risk assessment. The bioavailability of Cd, Cu, Pb and Zn in three agricultural soils was examined in the laboratory to recreate irrigation with greywater enriched in anionic surfactants (Aerosol 22 and Biopower). Field capacity and saturation regimes were considered for this study. Irrigation with aqueous solutions of the anionic surfactants increased total DOM concentrations and metals in the soil solution (Pb > Cu > Zn > Cd). Significant correlation (p < 0.05) between the readily available pool of metals with the concentration of DOM was determined for Cu (r = 0.67), Pb (r = 0.82) and Zn (r = 0.68). However, speciation analysis performed with the software WHAM indicated that mobilisation of DOM and metals into the soluble phase resulted in a low concentration of free ion activities and promoted the formation of metal-organo complexes. The characterization of fluorescence components revealed that DOM in soil solution from soils irrigated with Aerosol 22 was enriched in a reduced quinone-like and a humic-like component. Besides, fluorescence quenching provided further evidence of metal complexation with organic ligands in solution. Hence, metal mobilization in soil irrigated with surfactant enriched greywater occurs with solubilisation of high affinity organic ligands, which substantially decreases the potential risk of metal toxicity.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 576b-576
Author(s):  
Eovaldo Hernández

Most of the studies on the effect of humic acids on micronutrient uptake by plants has been carried out in nutrient solutions. Commercial companies have tried, without adequate experimental support, to extend the conclusions of these studies to the production of vegetables in agricultural soils. The effect of humic acids on micronutrient uptake by plants has been attributed' to (a) the improved supply of micronutrients to the soil solution caused by a higher rate of release from soil minerals (probably via chelate formation by humic acids) and (b) the improved uptake of micronutrients as consequence of the larger root system promoted by hormonal compounds in the humic acids. In soils with limiting concentration of micronutrients (such as some calcareous soils) and low content of organic matter, chelation of micronutrients by added commercial humic acids might increase their availability to plants. However, in agricultural soils with and adequate content of organic matter, no significant effect of commercial humic acids on micronutrient uptake by plants can be detected.


Author(s):  
Volker Hormann

AbstractThe component additive model UNiSeCs II for simulating the physicochemical behaviour of the radionuclides americium, plutonium and selenium in agricultural soils is presented. The model is validated by estimating the distribution coefficients (Kd) of these elements measured in batch experiments from the literature. For all three elements, the resulting average relative deviations from the experimental values are smaller than a factor of 2.5. This indicates that the model has the potential to significantly improve the predictions of radioecological models that normally use tabulated Kd values from the IAEA which are known to have large uncertainties. Using UNiSeCs II, the soil solution parameters most important for the partitioning of Am, Pu and Se are identified by single parameter variations.


Sign in / Sign up

Export Citation Format

Share Document