scholarly journals Direct Debris Flow Measurements using DFLP system at Kamikamihorizawa Creek

2021 ◽  
Vol 14 (2) ◽  
pp. 12-19
Author(s):  
Takahiro ITOH ◽  
Takahiko NAGAYAMA ◽  
Satoru MATSUDA ◽  
Takahisa MIZUYAMA
2021 ◽  
Author(s):  
Guillaume Meyrat

<p>Guillaume Meyrat, Brian McArdell, Ksenyia Ivanova, Perry Bartelt</p><p>WSL Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland</p><p> </p><p><strong>Keywords</strong>: Debris flows, multi-phase models, dilatancy, shear stress, density distribution</p><p> </p><p>To implement an accurate numerical tool to simulate debris flow hazard is a longstanding goal of natural hazard research and engineering. In Switzerland the application of numerical debris flow models has, however, been hampered by many practical and theoretical difficulties. One practical problem is to define realistic initial conditions for hazard scenarios that involve both the rocky (granular solid) and muddy (fluid) material. Still another practical problem is to model debris flow growth by entrainment [1]. These problems are compounded by theoretical uncertainties regarding the rheological behavior of multi-phase flows. Recent analysis of debris flow measurements at the Swiss Illgraben test-site [2] (shear and normal stresses, debris flow height) show that the shear force, and therefore the entire debris flow behavior, is largely influenced by the debris flow composition, i.e. the amount of solid particle and muddy fluid at any specific location within the debris flow body (front, tail, etc.). The debris flow composition is, in turn, determined by the initial and entrainment conditions for a specific event. As a consequence, we have concluded that the very first step to construct a robust numerical model is to accurately predict the space and time evolution of the solid/fluid flow composition for any set of initial and boundary conditions. To this aim, we have developed a two-phase dilatant debris flow model [3, 4, 5] that is based on the idea that the dispersion of solid material in fluid phase can change over time. The model is thus able to predict different flow compositions (rocky fronts, watery tails), using shallow-water type mass, momentum and energy conservation equations. This helps to predict when the solid phase deposits, and when muddy fluid washes and channel outbreaks in the runout zone can occur. The parameters controlling the evolution of debris flow density and saturation have been derived by direct comparison to the full-scale measurements performed at the Illgraben test site.</p><p> </p><p><strong>References</strong></p><p><strong> </strong></p><p> </p>


2021 ◽  
Author(s):  
Takahiro Itoh ◽  
Takahiko Nagayama ◽  
Satoru Matsuda ◽  
Takahisa Mizuyama

<p>The monitoring method for direct debris flow measurements using loadcells and so on, that were preliminary developed by WSL in Switzerland (McArdell et al., 2007), was firstly installed in Sakura-jima Island in Japan, where volcanic activity was severe, and many debris flows took place due to deposition of falling ash after eruptions. Debris Flow measurements with Loadcells and Pressure sensors (DFLP) system was installed referring to the method by WSL, and debris flow characteristics such as specific weight and volumetric sediment concentration have been obtained (e.g., Osaka et al., 2014).</p><p> In Japan, as well as in Sakura-jima island, attempts for debris flow monitoring were also carried out at KamiKamihori Creek since 1970s (e.g., Okuda et al., 1980), and there were a lot of debris flow events due to heavy rainfall. KamiKamihori Creek is at western side of Mt. Yake, where volcanic activity was severe at those time. The DFLP system was modified and installed there in November in 2014, because there were a lot of sediment deposition and debris flows took place though volcanic activity has been inactive. Present research could report the following results.  </p><p>(1) Multiple debris floe over five surges were monitored using DFLP system installed in 2014 during 15 minutes in debris flow events on August 29th, 2019. Rainfall intensity for 10 minutes was 12 mm and accumulated depth was 56 mm just before those events. Antecedent time before those events was 4.5 hours.</p><p>(2) The DFLP system measured multiple debris flow surges in events on August 29th, 2019, and sediment concentration was calculated temporary and continuously. Time-averaged sediment concentration and relative mass density are calculated as 0.470 and 1.73, respectively, under flow discharge obtained by images analysis of CCTV video camera. Equilibrium sediment concentration of coarse sediment particles is estimated 0.160 for bed slope of 0.141 (8 degrees) and calculated value using the DFLP system is over than the equilibrium value because of mud phase due to fine sediment particles.</p><p> </p><p>References</p><p>McArdell B.W., Bartelt P., Kowalski J. (2007). Field observations of basal forces and fluid pore pressure in a debris flow, Geophysical Research Letters, Vo. 34, L07406.</p><p>Okuda, S., Suwa, H., Okunishi, K., Yokoyama, K., and Nakano, M. (1980). Observation of the motion of debris flow and its geomorphological effects, Zeitschrift fur Geomorphology, Suppl.-Bd.35, pp. 142–163.</p><p>Osaka T., Utsunomiya R., Tagata S., Itoh T., Mizuyama T. (2014). Debris Flow Monitoring using Load Cells in Sakurajima Island, Proceedings of the Interpraevent 2014 in the Pacific Rim (edited by Fujita, M. et al.), Nov. 25-28, Nara, Japan, 2014, O-14.pdf in DVD.</p>


2005 ◽  
Vol 5 (6) ◽  
pp. 971-977 ◽  
Author(s):  
Y. Itakura ◽  
H. Inaba ◽  
T. Sawada

Abstract. Debris-flow monitoring has two functions, warning and modeling. The warning function includes the following parameters: occurrence prediction and detection, proximity sensing, and discharge-estimation. The parameters obtained from debris-flow measurements can deduce a numerical model for creating a hazard map and designing various types of control structures to mitigate the hazards. Many devices and methods of monitoring are tabulated here for comparative study. Some of them are in operation. Advanced comparative studies lead to an improvement in debris-flow monitoring, an integrated system that can be applied to any torrent, and a breakthrough in future developments.


2020 ◽  
Author(s):  
Tjalling de Haas ◽  
Wiebe Nijland ◽  
Brian McArdell

<p>Debris flows can grow greatly in size and hazardous potential by eroding bed material, but effective hazard assessment and mitigation is currently hampered by limited understanding of erosion and deposition dynamics. We have collected high-resolution pre- and post-flow topography with drone-based photogrammetry in the Illgraben channel in the Swiss Alps. We present erosion and deposition patterns as a result of six debris flows and intensive subcatchment activity over a 3.3 km long unconsolidated reach with check dams, and interpret these erosion and deposition patterns with in-situ flow measurements. We show that the spatio-temporal patterns of erosion and deposition in natural debris-flow torrents are highly variable and dynamic. We identify a memory effect where erosion is strong at locations of strong deposition during previous flows and vice versa. Large sediment inputs from subcatchments initially result in new channel erosion through the subcatchments deposits and at the same time upstream deposition as a result of backwater effects. It is generally believed that erosion increases with debris-flow magnitude, but we show that there is a limit to debris-flow bulking set by channel geometry. Large flows that overtop their channel deposit large amount of sediment in levees and on overbanks, leading to net deposition despite strong thalweg erosion, and thus a decrease in flow volume. These findings provide key guidelines for flow volume forecasting, emphasizing the importance of memory effects and the need to resolve both erosion and deposition for accurate flow volume estimation.</p>


1978 ◽  
Vol 17 (04) ◽  
pp. 142-148
Author(s):  
U. Büll ◽  
S. Bürger ◽  
B. E. Strauer

Studies were carried out in order to determine the factors influencing myocardial 201T1 uptake. A total of 158 patients was examined with regard to both 201T1 uptake and the assessment of left ventricular and coronary function (e. g. quantitative ventriculography, coronary arteriography, coronary blood flow measurements). Moreover, 42 animal experiments (closed chest cat) were performed. The results demonstrate that:1) 201T1 uptake in the normal and hypertrophied human heart is linearly correlated with the muscle mass of the left ventricle (LVMM);2) 201T1 uptake is enhanced in the inner (subendocardial) layer and is decreased in the outer (subepicardial) layer of the left ventricular wall. The 201T1 uptake of the right ventricle is 40% lower in comparison to the left ventricle;3) the basic correlation between 201T1 uptake and LVMM is influenced by alterations of both myocardial flow and myocardial oxygen consumption; and4) inotropic interventions (isoproterenol, calcium, norepinephrine) as well as coronary dilatation (dipyridamole) may considerably augment 201T1 uptake in accordance with changes in myocardial oxygen consumption and/or myocardial flow.It is concluded that myocardial 201T1 uptake is determined by multiple factors. The major determinants have been shown to include (i) muscle mass, (ii) myocardial flow and (iii) myocardial oxygen consumption. The clinical data obtained from patient groups with normal ventricular function, with coronary artery disease, with left ventricular wall motion abnormalities and with different degree of left ventricular hypertrophy are correlated with quantitated myocardial 201T1 uptake.


1975 ◽  
Vol 14 (04) ◽  
pp. 301-309
Author(s):  
A. Marczak ◽  
A. Moszczyńska-Kowalska ◽  
H. Kowalski

SummaryThe relative solubility coefficient of 133Xe and the tissue-blood partition coefficient for the aqueous humour vitreous body, conjunctiva and external eye muscles of the rabbit were determined in vitro at 37° C and at various haematocrit values. The partition coefficient for haematocrit 40 was: for the aqueous humour 0,49 ml/ml, for the vitreous body 0,50 ml/ml, for the conjunctiva 0,81 ml/g and for the external eye muscles 0,77 ml/g. It was found that the solubility of 133Xe in rabbit erythrocytes is about 50 per cent higher than that in human red cells. The consequences of this fact for the precision of blood flow measurements by the method of tissue clearance are discussed.


Author(s):  
Anatoly Kusher

The reliability of water flow measurement in irrigational canals depends on the measurement method and design features of the flow-measuring structure and the upstream flow velocity profile. The flow velocity profile is a function of the channel geometry and wall roughness. The article presents the study results of the influence of the upstream flow velocity profile on the discharge measurement accuracy. For this, the physical and numerical modeling of two structures was carried out: a critical depth flume and a hydrometric overfall in a rectangular channel. According to the data of numerical simulation of the critical depth flume with a uniform and parabolic (1/7) velocity profile in the upstream channel, the values of water discharge differ very little from the experimental values in the laboratory model with a similar geometry (δ < 2 %). In contrast to the critical depth flume, a change in the velocity profile only due to an increase in the height of the bottom roughness by 3 mm causes a decrease of the overfall discharge coefficient by 4…5 %. According to the results of the numerical and physical modeling, it was found that an increase of backwater by hydrometric structure reduces the influence of the upstream flow velocity profile and increases the reliability of water flow measurements.


Sign in / Sign up

Export Citation Format

Share Document