scholarly journals Researches Concerning the Lubrication of Profiled Surfaces in Slip Boundary Conditions

2020 ◽  
Vol 12 (4) ◽  
pp. 163-172
Author(s):  
Alexandru Valentin RADULESCU ◽  
Irina RADULESCU

The paper investigates the squeeze film process for non-Newtonian fluids between two circular parallel profiled surfaces. The lower surface is characterized by the existence of a cylindrical or spherical dimple in the center, which is specific for profiled surfaces by texturing. In order to integrate the Reynolds equation, the slip boundary conditions on the upper surface have been assumed. Finally, the pressure distribution and the loading capacity of the non-Newtonian film are obtained.

2017 ◽  
Vol 818 ◽  
pp. 68-99 ◽  
Author(s):  
N. Y. Bailey ◽  
S. Hibberd ◽  
H. Power

A gas lubricated bearing model is derived which is appropriate for a very small bearing face separation by including velocity slip boundary conditions and centrifugal inertia effects. The bearing dynamics is examined when an external harmonic force is imposed on the bearing due to the bearing being situated within a larger complex dynamical system. A compressible Reynolds equation is formulated for the gas film which is coupled to the bearing structure through an axial force balance where the rotor and stator correspond to spring–mass–damper systems. Surface slip boundary conditions are derived on the bearing faces, characterised by the slip length parameter. The coupled bearing system is analysed using a stroboscopic map solver with the modified Reynolds equation and structural equations solved simultaneously. For a sufficiently large forcing amplitude a flapping motion of the bearing faces is induced when the rotor and stator are in close proximity. The minimum bearing gap over the time period of the external forcing is examined for a range of bearing parameters.


Author(s):  
Zhipeng Duan

Gaseous flow in circular and noncircular microchannels has been examined and a simple analytical model with second-order slip boundary conditions for normalized Poiseuille number is proposed. The model is applicable to arbitrary length scale. It extends previous studies to the transition regime by employing the second-order slip boundary conditions. The effects of the second-order slip boundary conditions are analyzed. As in slip and transition regimes, no solutions or graphical and tabulated data exist for most geometries, the developed simple model can be used to predict friction factor, mass flow rate, tangential momentum accommodation coefficient, pressure distribution of gaseous flow in noncircular microchannels by the research community for the practical engineering design of microchannels such as rectangular, trapezoidal, double-trapezoidal, triangular, rhombic, hexagonal, octagonal, elliptical, semielliptical, parabolic, circular sector, circular segment, annular sector, rectangular duct with unilateral elliptical or circular end, annular, and even comparatively complex doubly-connected microducts. The developed second-order models are preferable since the difficulty and “investment” is negligible compared with the cost of alternative methods such as molecular simulations or solutions of Boltzmann equation. Navier-Stokes equations with second-order slip models can be used to predict quantities of engineering interest such as Poiseuille number, tangential momentum accommodation coefficient, mass flow rate, pressure distribution, and pressure drop beyond its typically acknowledged limit of application. The appropriate or effective second-order slip coefficients include the contribution of the Knudsen layers in order to capture the complete solution of the Boltzmann equation for the Poiseuille number, mass flow rate, and pressure distribution. It could be reasonable that various researchers proposed different second-order slip coefficients because the values are naturally different in different Knudsen number regimes. The transition regime is a varying mixture of different transport mechanisms and the mixed degree relies on the magnitude of the Knudsen number. It is analytically shown that the Knudsen’s minimum can be predicted with the second-order model and the Knudsen value of the occurrence of Knudsen’s minimum depends on inlet and outlet pressure ratio. The compressibility and rarefaction effects on mass flow rate and the curvature of the pressure distribution by employing first-order and second-order slip flow models are analyzed and compared. The condition of linear pressure distribution is given. This paper demonstrates that with some relatively simple ideas from knowledge, observation, and intuition, one can predict some fairly complex flows.


1979 ◽  
Vol 101 (1) ◽  
pp. 64-66 ◽  
Author(s):  
A. Sereny ◽  
V. Castelli

The behavior of two numerical discretizations for the solution of Reynolds equation with slip boundary conditions for cases of large bearing number is described. The narrow boundary layer caused by the large bearing number is well handled by a variable grid spacing. The performance of these methods is compared against exact solutions for the ∞-wide case. It is clearly demonstrated that discretization which satisfies integral conservation is preferable to the differential procedure of finite differencing.


1978 ◽  
Vol 100 (1) ◽  
pp. 70-73 ◽  
Author(s):  
Aron Sereny ◽  
Vittorio Castelli

The method of matched asymptotic expansion is applied to obtain the pressure distribution and the load carrying capacity for an infinitely long slider bearing, operating under high-speed, low-height, with slip boundary conditions. The pressure distribution is easily applicable as the starting solution for the iterative numerical solution of Reynolds equation. Two examples given show extremely good correlation between this expansion and the numerical solution. It is shown that, for a tapered slider bearing with a bearing number above 100, the reduction in load because of slip is minimal and that, for a parabolic slider, there exists a certain unique bearing number for which the load carrying capacity is independent of the parabolic crown of the slider. It is shown that for a wide slider bearing with large bearing number, the effect of slip is on the order of 1/A.


Sign in / Sign up

Export Citation Format

Share Document