Second-Order Gaseous Flow Models in Long Circular and Noncircular Microchannels and Nanochannels

Author(s):  
Zhipeng Duan

Gaseous flow in circular and noncircular microchannels has been examined and a simple analytical model with second-order slip boundary conditions for normalized Poiseuille number is proposed. The model is applicable to arbitrary length scale. It extends previous studies to the transition regime by employing the second-order slip boundary conditions. The effects of the second-order slip boundary conditions are analyzed. As in slip and transition regimes, no solutions or graphical and tabulated data exist for most geometries, the developed simple model can be used to predict friction factor, mass flow rate, tangential momentum accommodation coefficient, pressure distribution of gaseous flow in noncircular microchannels by the research community for the practical engineering design of microchannels such as rectangular, trapezoidal, double-trapezoidal, triangular, rhombic, hexagonal, octagonal, elliptical, semielliptical, parabolic, circular sector, circular segment, annular sector, rectangular duct with unilateral elliptical or circular end, annular, and even comparatively complex doubly-connected microducts. The developed second-order models are preferable since the difficulty and “investment” is negligible compared with the cost of alternative methods such as molecular simulations or solutions of Boltzmann equation. Navier-Stokes equations with second-order slip models can be used to predict quantities of engineering interest such as Poiseuille number, tangential momentum accommodation coefficient, mass flow rate, pressure distribution, and pressure drop beyond its typically acknowledged limit of application. The appropriate or effective second-order slip coefficients include the contribution of the Knudsen layers in order to capture the complete solution of the Boltzmann equation for the Poiseuille number, mass flow rate, and pressure distribution. It could be reasonable that various researchers proposed different second-order slip coefficients because the values are naturally different in different Knudsen number regimes. The transition regime is a varying mixture of different transport mechanisms and the mixed degree relies on the magnitude of the Knudsen number. It is analytically shown that the Knudsen’s minimum can be predicted with the second-order model and the Knudsen value of the occurrence of Knudsen’s minimum depends on inlet and outlet pressure ratio. The compressibility and rarefaction effects on mass flow rate and the curvature of the pressure distribution by employing first-order and second-order slip flow models are analyzed and compared. The condition of linear pressure distribution is given. This paper demonstrates that with some relatively simple ideas from knowledge, observation, and intuition, one can predict some fairly complex flows.

2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


Author(s):  
Chungpyo Hong ◽  
Yutaka Asako ◽  
Koichi Suzuki

Poiseuille number, the product of friction factor and Reynolds number (f · Re) for quasi-fully developed concentric micro annular tube flow was obtained for both no-slip and slip boundary conditions. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian (ALE) method. The compressible momentum and energy equations were solved for a wide range of Reynolds and Mach numbers for both isothermal flow and no heat conduction flow conditions. The detail of the incompressible slip Poiseuille number is kindly documented and its value defined as a function of r* and Kn is represented. The outer tube radius ranges from 50 to 150μm with the radius ratios of 0.2, 0.5 and 0.8 and selected tube length is 0.02m. The stagnation pressure, pstg is chosen in such away that the exit Mach number ranges from 0.1 to 0.7. The outlet pressure is fixed at the atmospheric pressure. In the case of fast flow, the value of f · Re is higher than that of incompressible slip flow theory due to the compressibility effect. However in the case of slow flow the value of f · Re is slightly lower than that of incompressible slip flow due to the rarefaction effect, even the flow is accelerated. The value of f · Re obtained for no-slip boundary conditions is compared with that of obtained for slip boundary conditions. The values of f · Re obtained for slip boundary conditions are predicted by f · Re correlations obtained for no-slip boundary conditions since rarefaction effect is relatively small for the fast flow.


Author(s):  
Irina A. Graur ◽  
Pierre Perrier ◽  
J. G. Me´olans

Mass flow rate measurements in a single silicon micro channel were carried out for various gases in isothermal steady flows. The results obtained from hydrodynamic to near free molecular regime by using a powerful experimental platform, allowed us to deduce interesting information, notably about the reflection/accommodation process at the wall. In the 0 – 0.3 Knudsen range, a continuum analytic approach was derived from NS equations, associated to first or second order slip boundary conditions. Identifying the experimental mass flow rate curves to the theoretical ones the tangential momentum accommodation coefficient (TMAC) of various gases was extracted. Over all the Knudsen range [0 – 50] the experimental results were compared with theoretical values calculated from the kinetic approaches: using variable accommodation coefficient values as fitting parameter, the theoretical curves were fitted to the experimental ones. Whatever the Knudsen range and whatever the theoretical approach, the TMAC values are found decreasing when the molecular weights of the gas increase (as long as the different gases are compared using the same approach). Moreover, the values of the various accommodation coefficients are rather close one to other but sufficiently smaller than unity to conclude that the full accommodation modelling is not satisfactory to describe the gas/wall interaction.


Author(s):  
Kitti Nilpueng ◽  
Somchai Wongwises

In this study, the flow mechanisms of HFC-134a and HFC-410A, including flow pattern, pressure distribution, temperature distribution, and mass flow rate inside short-tube orifice are presented and compared under the same working temperature. The test runs are performed at condenser temperature ranging between 35 and 45°C, evaporator temperature ranging between 2 and 12°C, and degree of subcooling ranging between 1 and 12 °C. The results show that the temperature distribution along the short-tube orifice obtained from HFC-410A is slightly higher than that obtained from HFC-134a. On the other hand, the pressure distribution between both refrigerants shows the large difference. It is also found that the tendency of mass flow rate obtained from HFC-134a almost coincides with those obtained HFC-410A as the operating conditions and short-tube orifice size are varied. However, the average mass flow rate of HFC-134a is slightly lower than that of HFC-410A.


2014 ◽  
Vol 989-994 ◽  
pp. 2264-2267
Author(s):  
Dong Fang Zhao ◽  
Feng Guo Liu

This paper investigated a new type of gas distributor with two chambers by CFD software. The distributor has a natural gas inlet and nine nozzle outlets. For the investigation of this project, the mass flow rate of the distributor was analyzed in this paper to provide a way to optimize the structure of distributor. The N-S equations approached with the RNG k-ε turbulence model and the discretization were employed second order upwind. The simulation results will provide a number of useful suggestions and references for the further design.


2020 ◽  
Vol 12 (4) ◽  
pp. 163-172
Author(s):  
Alexandru Valentin RADULESCU ◽  
Irina RADULESCU

The paper investigates the squeeze film process for non-Newtonian fluids between two circular parallel profiled surfaces. The lower surface is characterized by the existence of a cylindrical or spherical dimple in the center, which is specific for profiled surfaces by texturing. In order to integrate the Reynolds equation, the slip boundary conditions on the upper surface have been assumed. Finally, the pressure distribution and the loading capacity of the non-Newtonian film are obtained.


2019 ◽  
Vol 29 (5) ◽  
pp. 1786-1814 ◽  
Author(s):  
A.A. Avramenko ◽  
N.P. Dmitrenko ◽  
I.V. Shevchuk ◽  
A.I. Tyrinov ◽  
V.I. Shevchuk

Purpose The paper aims to consider heat transfer in incompressible flow in a rotating flat microchannel with allowance for boundary slip conditions of the first and second order. The novelty of the paper encompasses analytical and numerical solutions of the problem, with the latter based on the lattice Boltzmann method (LBM). The analytical solution of the problem includes relations for the velocity and temperature profiles and for the Nusselt number depending on the rotation rate of the microchannel and slip velocity. It was demonstrated that the velocity profiles at high rotation rates transform from parabolic to M-shaped with a minimum at the channel axis. The temperature profiles tend to become uniform (i.e. almost constant). An increase in the channel rotation rate contributes to the increase in the Nusselt number. An increase in the Prandtl number causes a similar effect. The trend caused by the effect of the second-order slip boundary conditions depends on the closure hypothesis. It is shown that heat transfer in a flat microchannel can be successfully modeled using the LBM methodology, which takes into account the second-order boundary conditions. Design/methodology/approach The paper is based on the comparisons of an analytical solution and a numerical solution, which employs the lattice Boltzmann method. Both mathematical approaches used the first-order and second-order slip boundary conditions. The results obtained using both methods agree well with each other. Findings The analytical solution of the problem includes relations for the velocity and temperature profiles and for the Nusselt number depending on the rotation rate of the microchannel and slip velocity. It was demonstrated that the velocity profiles at high rotation rates transform from parabolic to M-shaped with a minimum at the channel axis. The temperature profiles tend to become uniform (i.e. almost constant). The increase in the channel rotation rate contributes to the increase in the Nusselt number. An increase in the Prandtl number causes the similar effect. The trend caused by the effect of the second-order slip boundary conditions depends on the closure hypothesis. It is shown that heat transfer in a flat microchannel can be successfully modeled using the LBM methodology, which considers the second-order boundary conditions. Originality/value The novelty of the paper encompasses analytical and numerical solutions of the problem, whereas the latter are based on the LBM.


Sign in / Sign up

Export Citation Format

Share Document