scholarly journals Hydrostatic pressure loads for a tank using “CID Distributed Loads” fields in a PATRAN FEM model

2021 ◽  
Vol 13 (4) ◽  
pp. 197-204
Author(s):  
Daniela BARAN ◽  
Mihaela PETRE

The purpose of this paper is to present a practical way to introduce distributed loads on the walls of a tank in order to perform a FEM analysis using PATRAN/NASTRAN programs. The problem is generated mainly by the fact that there are gravitational accelerations in the three directions of the moving airplane that produce a great number of combinations of inertial loads and consequently a great number of critical load cases. We compared the performed stress analysis with the loads obtained with this method in different cases for 𝑛𝑛=1. (Different forms of the fuel tanks and different placements of the tank inside the aircraft). The form and the density of the grid do not significantly affect the precision of the real inertia loads. Using the presented method one can reduce the volume of FEM files used in the analysis and can quite accurately reproduce the pressure loads on the fuel of a moving aircraft.

2016 ◽  
Vol 2 (1) ◽  
pp. 20-25
Author(s):  
Michal Tropp ◽  
Michal Lukac

The article covers the usability of alternative materials in vehicle construction. The paper elaborates upon the setup of the process and analysis of the results of the carbon composite component FEM model. The 3D model, used for the examination, is a part of axle from an alternative small electric vehicle. The analysis was conducted with the help of MSC Adams and Ansys Workbench software. Color maps of von Mises stress in material and total deformations of the component are the results of calculation.


2013 ◽  
Vol 483 ◽  
pp. 386-390
Author(s):  
Lei Song ◽  
Tong Su ◽  
Li Ying Gao ◽  
Qin He Zhang

In order to improve the accuracy of biopsy, an accurate FEM model is quite essential. To get the coefficients of the puncture target material which will be used in the Abaqus FEM analysis, the paper performed indentation test on gelatin phantom which is more stable than normal biological tissue. The Neo-Hookean and the improved Kelvin constitutive model were used to describe the mechanical properties of gelatin phantom demonstrated in the tests, including the hyperelastic and viscoelastic characteristics, then least squares method was used to fit the experimental data, finally the parameters of each constitutive model were achieved, which will be used to establish the material model in the further Abaqus FEM simulation.


2015 ◽  
Vol 752-753 ◽  
pp. 412-417 ◽  
Author(s):  
Martin Krejsa ◽  
Jiri Brozovsky ◽  
David Mikolasek ◽  
Premysl Parenica ◽  
Libor Zidek ◽  
...  

The paper describes the experimental tests of steel bearing elements, which were aimed at obtaining material, geometric and strength characteristics of the fillet welds. Preparation of experiment consisted in defining of numerical models of tested samples using FEM analysis and the commercial software ANSYS. Data obtained from described experimental tests are necessary for further numerical modelling of stress analysis of steel structural supporting elements.


2008 ◽  
Vol 385-387 ◽  
pp. 513-516 ◽  
Author(s):  
Hendra ◽  
Masakazu Tsuyunaru ◽  
Naoaki Noda ◽  
Yasushi Takase

Cast iron and steel conveying rollers used in hot rolling mills must be changed very frequently because conveyed strips with high temperature induces wear on the roller surface in short periods. This failure automatically stops the production line for repair and maintenance of conveying rollers. In this study a new type of roller is considered where a ceramics sleeve is connected with two short shafts at both ends by shrink fitting. Here, a ceramics sleeve provides longer life and therefore reduces the cost for the maintenance. However, for the hollow ceramics rollers, care should be taken for maximum tensile stresses appearing at both edges of the sleeve. In particular, because fracture toughness is extremely smaller compared with the value of steel, stress analysis for the roller is necessary for ceramics sleeve. In this study FEM analysis is applied to the structure, and the maximum stress has been investigated with varying the dimensions of the structure. It is found that the maximum tensile stress appearing at the end of sleeves takes a minimum value at a certain amount of shrink fitting ratio.


Author(s):  
Masahide Katsuo ◽  
Toshiyuki Sawa ◽  
Yuki Kikuchi

This study deals with the stress analysis and the estimation of sealing performance of the pipe flange connections with an adhesive under an internal pressure and an external bending moment are analyzed by using the 3-dimensional elastic finite element method (FEM). The experiment of the leakage test of the connections with an adhesive was carried out by applying the above loads to the connections. From the FEM analysis, the following results were obtained; (1) when an internal pressure is applied to the flange connections, the compressive stress at the interface between a flange and an adhesive increases proportionally from the inner side of the interface to outside, and (2) when an internal pressure and a bending moment apply to the flange connections, the stress distribution at the half part of the interface increases as the external bending moments increase and also Young’s modulus of the adhesive increases. From the experiments, the following results were obtained: (1) sealing performance of the pipe flange connections with an adhesive under an internal pressure and an external bending moment increases as the flange thickness and an initial clamping force of bolts increases and (2) the sealing performances were not found between the connections with an adhesive and that with a gasket combining an adhesive. Furthermore, the numerical results are in fairly good agreement with the experimental results.


1978 ◽  
Vol 22 (3) ◽  
pp. 574-579 ◽  
Author(s):  
Koji Omagari ◽  
Hiroshi Ikeda ◽  
Takashi Okamoto ◽  
Takuji Kuroda ◽  
Takao Maruyama ◽  
...  

1997 ◽  
Vol 66 (3) ◽  
pp. 142-146
Author(s):  
Masahiko Fujikubo
Keyword(s):  

2020 ◽  
Vol 1 (1) ◽  
pp. 47-58
Author(s):  
Laddu Bhagya Jayasinghe ◽  
Daniele Waldmann ◽  
Junlong Shang

Pile punching (or driving) affects the surrounding area where piles and adjacent piles can be displaced out of their original positions, due to horizontal loads, thereby leading to hazardous outcomes. This paper presents a three-dimensional (3D) coupled Smoothed Particle Hydrodynamics and Finite Element Method (SPH-FEM) model, which was established to investigate pile punching and its impact on adjacent piles subjected to lateral loads. This approach handles the large distortions by avoiding mesh tangling and remeshing, contributing greatly high computational efficiency. The SPH-FEM model was validated against field measurements. The results of this study indicated that the soil type in which piles were embedded affected the interaction between piles during the pile punching. A comprehensive parametric study was carried out to evaluate the impact of soil properties on the displacement of piles due to the punching of an adjacent pile. It was found that the interaction between piles was comparatively weak when the piles were driven in stiff clays; while the pile-soil interactions were much more significant in sandy soils and soft clays.


Sign in / Sign up

Export Citation Format

Share Document