scholarly journals Land use/land cover change prediction in Dak Nong Province based on remote sensing and Markov Chain Model and Cellular Automata

2018 ◽  
Vol 9 (3) ◽  
pp. 132-140 ◽  
Author(s):  
Thi Thanh Huong Nguyen ◽  
Thi Thuy Phuong Ngo

Land use and land cover changes (LULCC) including deforestation for agricultural land and others are elements that contribute on global environmental change. Therefore, understanding a trend of these changes in the past, current, and future is important for making proper decisions to develop in a sustainable way. This study analyzed land use and land cover (LULC) changes over time for Tuy Duc district belonging to Dak Nong province based on LULC maps classified from a set of multi-date satellite images captured in year 2003, 2006, 2009, and 2013 (SPOT 5 satellite images). The LULC spatio-temporal changes in the area were classified as perennial agriculture, cropland, residential area, grassland, natural forest, plantation and water surface. Based on these changes over time, potential LULC in 2023 was predicted using Cellular Automata (CA)–Markov model. The predicted results of the change in LULC in 2023 reveal that the total area of forest will lose 9,031ha accounting of 50% in total area of the changes. This may be mainly caused by converting forest cover to agriculture (account for 28%), grassland (12%) and residential area (9%). The findings suggest that the forest conversion needs to be controlled and well managed, and a reasonable land use plan should be developed in a harmonization way with forest resources conservation. Thay đổi sử dụng đất và thảm phủ (LULCC) bao gồm cả việc phá rừng để phát triển nông nghiệp và vì các mục đích khác là tác nhân đóng góp vào biến đổi môi trường toàn cầu. Vì vậy hiểu biết về khuynh hướng của sự thay đổi này trong quá khứ, hiện tại và tương lai là quan trọng để đưa ra những quyết định dúng đắn để phát triển bền vững. Nghiên cứu đã phân tích LULCC trong thời gian qua dựa vào các bản đồ sử dụng đất và thảm phủ (LULC) đã được phân loại từ một loạt ảnh vệ tinh đa phổ được thu chụp vào năm 2003, 2006, 2009 (ảnh SPOT 5). Những thay đổi LULC theo thời gian và không gian trong khu vực được phân loại thành đất nông nghiệp với cây dài ngày, cây ngắn ngày, thổ cư, trảng cỏ cây bụi, rừng tự nhiên, rừng trồng và mặt nước. Dựa trên sự thay đổi này theo thời gian, LULC tiềm năng cho năm 2023 đã được dự báo bằng cách sử dụng mô hình CA-Markov. Kết quả dự báo LULCC năm 2023 đã cho thấy tổng diện tích rừng bị mất khoảng 9,031 ha chiếm 50% trong tổng số diện tích thay đổi. Điều này chủ yếu là do chuyển đổi từ rừng tự nhiên sang canh tác nông nghiệp (chiếm 28%), trảng cỏ cây bụi (12%) và khu dân cư (9%). Kết quả cho thấy việc chuyển đổi rừng cần phải được kiểm soát và quản lý tốt và một kế hoạch sử dụng đất hợp lý cần được xây dựng trong sự hài hòa với bảo tồn tài nguyên rừng.

Author(s):  
M. S. Mondal ◽  
N. Sharma ◽  
M. Kappas ◽  
P. K. Garg

Abstract. In this study, attempts has been made to find out cellular automata (CA) contiguity filters impacts on Land use land cover change predictions results. Cellular Automata (CA) Markov chain model used to monitor and predict the future land use land cover pattern scenario in a part of Brahmaputra River Basin, India, using land use land cover map derived from multi-temporal satellite images. Land use land cover maps derived from satellite images of Landsat MSS image of 1987 and Landsat TM image of 1997 were used to predict future land use land cover of 2007 using Cellular Automata Markov model. The validity of the Cellular Automata Markov process for projecting future land use and cover changes calculates using various Kappa Indices of Agreement (Kstandard) predicted (results) maps with the reference map (land use land cover map derived from IRS-P6 LISS III image of 2007). The validation shows Kstandard is 0.7928. 3x3, 5x5 and 7x7 CA contiguity filters are evaluated to predict LULC in 2007 using 1987 and 1997 LULC maps. Regression analysis have been carried out for both predicted quantity as well as prediction location to established the cellular automata (CA) contiguity filters impacts on predictions results. Correlation established that predicted LULC of 2007 and LULC derived from LISS III Image of 2007 are strongly correlated and they are slightly different to each-other but the quantitative prediction results are same for when 3x3, 5x5 and 7x7 CA contiguity filters are evaluated to predict land use land cover. When we look at the quantity of predicted land use land cover of 2007 area statistics are derived by using 3x3, 5x5 and 7x7 CA contiguity filters, the predicted area statistics are the same. Other hands, the spatial difference between predicted LULC of 2007 and LULC derived from LISS III images of 2007 is evaluated and they are found to be slightly different. Correlation coefficient (r) between predicted LULC classes and LULC derived from LISS III image of 2007 using 3x3, 5x5, 7x7 are 0.7906, 0.7929, 0.7927, respectively. Therefore, the correlation coefficient (r) for 5x5 contiguity filters is highest among 3x3, 5x5, and 7x7 filters and established/produced most geographically / spatially distributed effective results, although the differences between them are very small.


2020 ◽  
Author(s):  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA


2020 ◽  
Author(s):  
Ismael Abdulrahman Ismael Abdulrahman Abdulrahman ◽  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA.


2020 ◽  
Vol 12 (24) ◽  
pp. 10452
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Roknisadeh Hamed ◽  
Akram Ahmed Noman Alabsi

Monitoring land use/land cover (LULC) change dynamics plays a crucial role in formulating strategies and policies for the effective planning and sustainable development of rapidly growing cities. Therefore, this study sought to integrate the cellular automata and Markov chain model using remotely sensed data and geographical information system (GIS) techniques to monitor, map, and detect the spatio-temporal LULC change in Zaria city, Nigeria. Multi-temporal satellite images of 1990, 2005, and 2020 were pre-processed, geo-referenced, and mapped using the supervised maximum likelihood classification to examine the city’s historical land cover (1990–2020). Subsequently, an integrated cellular automata (CA)–Markov model was utilized to model, validate, and simulate the future LULC scenario using the land change modeler (LCM) of IDRISI-TerrSet software. The change detection results revealed an expansion in built-up areas and vegetation of 65.88% and 28.95%, respectively, resulting in barren land losing 63.06% over the last three decades. The predicted LULC maps of 2035 and 2050 indicate that these patterns of barren land changing into built-up areas and vegetation will continue over the next 30 years due to urban growth, reforestation, and development of agricultural activities. These results establish past and future LULC trends and provide crucial data useful for planning and sustainable land use management.


Data ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 82
Author(s):  
Christophe Révillion ◽  
Artadji Attoumane ◽  
Vincent Herbreteau

Many small islands are located in the southwestern Indian Ocean. These islands have their own environmental specificities and very fragmented landscapes. Generic land use products developed from low and medium resolution satellite images are not suitable for studying these small territories. This is why we have developed a land use/land cover product, called Homisland-IO, based on remote sensing processing on high spatial resolution satellite images acquired by SPOT 5 satellite between December 2012 and July 2014. This product has been produced using an object-based classification process. The overall accuracy of the product is 86%. Homisland-IO is freely accessible through a web portal and is thus available for future use.


2020 ◽  
Vol 2 ◽  
pp. 27-31
Author(s):  
Sarah Hanim Samsudin ◽  
Anita Setu ◽  
Alyaa Filza Effendy ◽  
Mohd. Nadzari Ismail

Increase demand of electricity has driven the exploration of Hulu Terengganu hydroelectricity dam as an option to generate electric power supply. Therefore, as a way to monitor the landscape changes, spectral indices were used to study on the spatial-temporal changes over the Hulu Terengganu catchment area. Spectral indices technique was applied on satellite images which acquired on three different years to describe the changes before the construction phase, during the construction phase and post-construction phase. Satellite images used in this study are SPOT-5 and Landsat 7 for year 2006, SPOT-5 and Landsat 8 for year 2014 and Spot-7 and Sentinel 2 for year 2018. Alteration of the land use and land cover has recorded degradation of the forest area by -5.53% during the dam construction phase (2014) and -8.35% during post-construction phase (2018). It also found that water body has remarkable change of 10,141% increase from 2014 to 2018. The result from this study would be useful as an overview for future planning, decision making and dam management activity related to the Hulu Terengganu hydroelectric dam operation


2020 ◽  
Vol 12 (1) ◽  
pp. 626-636
Author(s):  
Wang Song ◽  
Zhao Yunlin ◽  
Xu Zhenggang ◽  
Yang Guiyan ◽  
Huang Tian ◽  
...  

AbstractUnderstanding and modeling of land use change is of great significance to environmental protection and land use planning. The cellular automata-Markov chain (CA-Markov) model is a powerful tool to predict the change of land use, and the prediction accuracy is limited by many factors. To explore the impact of land use and socio-economic factors on the prediction of CA-Markov model on county scale, this paper uses the CA-Markov model to simulate the land use of Anren County in 2016, based on the land use of 1996 and 2006. Then, the correlation between the land use, socio-economic data and the prediction accuracy was analyzed. The results show that Shannon’s evenness index and population density having an important impact on the accuracy of model predictions, negatively correlate with kappa coefficient. The research not only provides a reference for correct use of the model but also helps us to understand the driving mechanism of landscape changes.


Sign in / Sign up

Export Citation Format

Share Document