scholarly journals Durability Assessment of soft clay soil stabilized with halloysite nanotubes

2021 ◽  
pp. 429-436
Author(s):  
Masoud Tavakolipour
2019 ◽  
Vol 9 (1) ◽  
pp. 481-489
Author(s):  
D.C. Lat ◽  
I.B.M. Jais ◽  
N. Ali ◽  
B. Baharom ◽  
N.Z. Mohd Yunus ◽  
...  

AbstractPolyurethane (PU) foam is a lightweight material that can be used efficiently as a ground improvement method in solving excessive and differential settlement of soil foundation mainly for infrastructures such as road, highway and parking spaces. The ground improvement method is done by excavation and removal of soft soil at shallow depth and replacement with lightweight PU foam slab. This study is done to simulate the model of marine clay soil integrated with polyurethane foam using finite element method (FEM) PLAXIS 2D for prediction of settlement behavior and uplift effect due to polyurethane foam mitigation method. Model of soft clay foundation stabilized with PU foam slab with variation in thickness and overburden loads were analyzed. Results from FEM exhibited the same trend as the results of the analytical method whereby PU foam has successfully reduced the amount of settlement significantly. With the increase in PU foam thickness, the settlement is reduced, nonetheless the uplift pressure starts to increase beyond the line of effective thickness. PU foam design chart has been produced for practical application in order to adopt the effective thickness of PU foam within tolerable settlement value and uplift pressure with respect to different overburden loads for ground improvement works.


2012 ◽  
Vol 15 (1) ◽  
pp. 211-222
Author(s):  
G Attia ◽  
E Elshamy ◽  
H Fawzy ◽  
K Abdul - hafez
Keyword(s):  

2019 ◽  
Vol 5 (4) ◽  
pp. 922-939 ◽  
Author(s):  
Anis Abdul Khuder Mohamad Ali ◽  
Jaffar Ahemd Kadim ◽  
Ali Hashim Mohamad

The objective of this article is to generating the design charts deals with the axially ultimate capacity of single pile action by relating the soil and pile engineering properties with the pile capacity components. The soil and are connected together by the interface finite element along pile side an on its remote end.  The analysis was carried out using ABAQUS software to find the nonlinear solution of the problem. Both pile and soil were modeled with three-dimensional brick elements. The software program is verified against field load-test measurements to verify its efficiency accuracy. The concrete bored piles are used with different lengths and pile diameter is taken equals to 0.6 m. The piles were installed into a single layer of sand soil with angles of internal friction (20° t0 40°) and into a single layer of clay soil with Cohesion (24 to 96) kPa.  The getting results showed that for all cases study the total compression resistance is increased as pile length increased for the same property of soil, also illustrious that the total resistance of same pile length and diameter increased as the soil strength increasing. In addition, the same results were obtained for the end bearing resistance, skin resistance and tension capacity. Design charts were constructed between different types of soil resistance ratio and the pile length/diameter ratio (L/D) for all cases of study. One of improvement found from these curves that it is cheaply using piles of larger diameter than increasing their lengths for dense sand and to increasing piles lengths for loose sand. Moreover, it is inexpensively using piles of larger length in soft clay soil than increasing their diameter and piles of larger diameter in firm and stiff clay soils than increasing their length.


2018 ◽  
Vol 783 ◽  
pp. 46-50
Author(s):  
Yu Cong Gao ◽  
Rong Chen ◽  
Dong Xue Hao ◽  
Myoung Soo Won

Geosynthetics–reinforced structures are widely used in embankments and walls. This paper presents the simulation of the embankment under load in order to compare the behavior of clay embankment with and without wrapping-facing-geosynthetics-reinforcement using finite element method (FEM) and to analyse the variation of behavior included of displacement and excess pore pressure under the different over-consolidation ratios (OCR). The calculation results show that embankment with higher OCR showing lower displacement compare to embankment with lower OCR. However, OCR isn’t very sensitive to the dissipation of excess pore pressure. Geosynthetics-reinforcements could reduce the displacement of embankment and accelerate dissipation of excess pore pressure after construction and surcharge. Gravel, geosynthetics-reinforcement and clay soil are properly combined, clayey soil is expected to be useful as embankment material.


Author(s):  
Reffanda Kurniawan Rustam ◽  
Ayu Resti ◽  
Herri Purwanto ◽  
Firdaus Muhammad
Keyword(s):  

2021 ◽  
Vol 856 (1) ◽  
pp. 012010
Author(s):  
Omer A. Abd-Allah ◽  
Safa H. Abid Awn ◽  
Raquim N. Zehawi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document