scholarly journals A Short State-of-the-Art Review on Construction and Settlement of Soft Clay Soil Reinforced with Stone ColumnA Short State-of-the-Art Review on Construction and Settlement of Soft Clay Soil Reinforced with Stone Column

2014 ◽  
Vol 6 (5) ◽  
pp. 420-426 ◽  
Author(s):  
A. Vahedian ◽  
S. Mahini ◽  
S. A. Aghdaei

Problematic soil which cause extra problems from engineering point of views which result in its composition or environmental conditions change. The weak subsoil deposits like soft clay pose the low bearing capacity and more settlements over long periods of time. The stone column technique is better, economical and cost-effective method of soft soil stabilization. They are used to support embankments, large raft foundations and isolated footings. Numerous researchers have just completed various vertical stacking probes stone column balanced out clay bed and have discovered that expands bearing capacity of delicate clay, diminishes displacement and changes the conduct of burden settlement. In the current study, a 2D finite element model is completed to evalute how the delicate clay soil balanced out by stone column are affected by the vertical burdens. Stone column were intended for examinations with fluctuating in their angle proportions (change in estimations of length, L and breadth, D) of stone column. The effect of floating stone column and end bearing stone segment on delicate clay is in like manner controlled by using various L/D ratios. Besides, the present outcomes express how the heap conveying limit of stone column is differed by changing in the angle proportions of the stone column. Likewise ends were drawn that bulging impact of stone column plays a vital role in conveying vertical burden.


2018 ◽  
Vol 1 ◽  
pp. 33-38
Author(s):  
Kwa S.F. ◽  
Kolosov E.S.

The behavior of the fully saturated clay soil reinforced by stone columns subjected to cyclic load is of considerable very important in the design of railway subgrades, these soft clay soil are characterized by high settlement and low bearing capacity because of the excess pore pressure due to heavy freight trains significantly reduces the bearing capacity which causes serious problems, the used of stone column for reinforced the saturated clay soil will reduced the settlement and increase the bearing capacity. The purpose of the current research is cases study of foundation soil improvement by reduced the settlement for a building structure using stone columns system with and without geogrid encasement under cyclic load with rate of loading 5 mm/sec.


2021 ◽  
Vol 930 (1) ◽  
pp. 012099
Author(s):  
M Hasan ◽  
M S I Zaini ◽  
N A A Hashim ◽  
A Wahab ◽  
K A Masri ◽  
...  

Abstract Ground improvement methods are used to reduce the weakness of soft clay, which is low strength and high compressibility. The stone column technique involves replacing any of the soil with crushed stone such as broken rocks or sand which is an efficient method of improving the strength parameters of soil. Bottom ash usage in materials of building will effectively decrease the buildup of the waste and hence protect the environment. This study is to determine the shear strength of kaolin soft clay reinforced with a 20 mm diameter single encapsulated bottom ash column with various lengths. The research will look into the physicomechanical qualities of the materials used, including subsoil and bottom ash. Three (3) batches of samples with each batch consists of five (5) samples were prepared by using compaction method. All kaolin samples with a diameter of 50mm and height of 100mm with single encapsulated bottom ash columns with various lengths which are 60mm, 80mm, and 100mm were tested under Unconfined Compression Test (UCT). The result illustrated that the strength of samples increases as the height and volume of encapsulated bottom ash column increases.


2019 ◽  
Vol 9 (1) ◽  
pp. 481-489
Author(s):  
D.C. Lat ◽  
I.B.M. Jais ◽  
N. Ali ◽  
B. Baharom ◽  
N.Z. Mohd Yunus ◽  
...  

AbstractPolyurethane (PU) foam is a lightweight material that can be used efficiently as a ground improvement method in solving excessive and differential settlement of soil foundation mainly for infrastructures such as road, highway and parking spaces. The ground improvement method is done by excavation and removal of soft soil at shallow depth and replacement with lightweight PU foam slab. This study is done to simulate the model of marine clay soil integrated with polyurethane foam using finite element method (FEM) PLAXIS 2D for prediction of settlement behavior and uplift effect due to polyurethane foam mitigation method. Model of soft clay foundation stabilized with PU foam slab with variation in thickness and overburden loads were analyzed. Results from FEM exhibited the same trend as the results of the analytical method whereby PU foam has successfully reduced the amount of settlement significantly. With the increase in PU foam thickness, the settlement is reduced, nonetheless the uplift pressure starts to increase beyond the line of effective thickness. PU foam design chart has been produced for practical application in order to adopt the effective thickness of PU foam within tolerable settlement value and uplift pressure with respect to different overburden loads for ground improvement works.


2012 ◽  
Vol 15 (1) ◽  
pp. 211-222
Author(s):  
G Attia ◽  
E Elshamy ◽  
H Fawzy ◽  
K Abdul - hafez
Keyword(s):  

2019 ◽  
Vol 5 (4) ◽  
pp. 922-939 ◽  
Author(s):  
Anis Abdul Khuder Mohamad Ali ◽  
Jaffar Ahemd Kadim ◽  
Ali Hashim Mohamad

The objective of this article is to generating the design charts deals with the axially ultimate capacity of single pile action by relating the soil and pile engineering properties with the pile capacity components. The soil and are connected together by the interface finite element along pile side an on its remote end.  The analysis was carried out using ABAQUS software to find the nonlinear solution of the problem. Both pile and soil were modeled with three-dimensional brick elements. The software program is verified against field load-test measurements to verify its efficiency accuracy. The concrete bored piles are used with different lengths and pile diameter is taken equals to 0.6 m. The piles were installed into a single layer of sand soil with angles of internal friction (20° t0 40°) and into a single layer of clay soil with Cohesion (24 to 96) kPa.  The getting results showed that for all cases study the total compression resistance is increased as pile length increased for the same property of soil, also illustrious that the total resistance of same pile length and diameter increased as the soil strength increasing. In addition, the same results were obtained for the end bearing resistance, skin resistance and tension capacity. Design charts were constructed between different types of soil resistance ratio and the pile length/diameter ratio (L/D) for all cases of study. One of improvement found from these curves that it is cheaply using piles of larger diameter than increasing their lengths for dense sand and to increasing piles lengths for loose sand. Moreover, it is inexpensively using piles of larger length in soft clay soil than increasing their diameter and piles of larger diameter in firm and stiff clay soils than increasing their length.


Sign in / Sign up

Export Citation Format

Share Document