scholarly journals Bryophyllum pinnatum leaves ethanol extract inhibit maturation and promote apoptosis of systemic lupus erythematosus BALB/c mice B cells

2018 ◽  
Vol 26 (4) ◽  
pp. 253-60
Author(s):  
Kusworini Handono ◽  
Tri W.I. Dantara ◽  
Elvira S. Dewi ◽  
Mirza Z. Pratama ◽  
Nurdiana Nurdiana

Background: B cells play a key role in systemic lupus erythematosus (SLE). Targeting B cells as SLE therapy is a plausible approach. This study investigated the potential effects of Bryophyllum pinnatum leaves with ethanol extract in decreasing percentages of maturation, increasing percentages of apoptosis, and decreasing NF-κB p65 expressions of SLE BALB/c mice B cells.Methods: Culturing B cells from pristane induced SLE BALB/c mice’s spleen will resulted in this in vitro study. B cells were activated by BAFF, LPS, IL-4, and anti-CD40 yielding CD19+ >80%. B cells were cultured by adding those stimulants with and without B. pinnatum leaves (0, 0.02, 0.1, or 0.5 µg/ml) for 72 hours at 37°C. Flow cytometry was performed to determine The Percentages of maturation (CD19+CD38+) and apoptosis (Annexin V+PI+) of B cells.  Further analysis to determine the expressions of transcription factor of maturation and apoptosis of B cells, NF-ĸB p65, were performed using immunocytochemistry. Data were analyzed using SPSS version 22.Results: Flow cytometry assay showed significant decrease in percentages of maturation of B cells in all doses and significant increase in percentage of apoptosis of B cells in dose 0.5 µg/ml. Immunocytochemistry results showed significant decrease expressions of NF-ĸB p65 in all doses. Percentages of maturation, apoptosis, and expressions of NF-ĸB p65 of B cells were significantly correlated.Conclusion: This in vitro study revealed that B. pinnatum leaves with ethanol extract decreased the percentages of maturation, increased the percentage of apoptosis, and decreased NF-κB p65 expressions of SLE BALB/c mice B cells significantly.

2021 ◽  
Vol 3 (5) ◽  
pp. e357-e370
Author(s):  
Melissa Northcott ◽  
Linden J Gearing ◽  
Hieu T Nim ◽  
Champa Nataraja ◽  
Paul Hertzog ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 230.2-231
Author(s):  
A. Pappalardo ◽  
E. Wojciechowski ◽  
I. Odriozola ◽  
I. Douchet ◽  
N. Merillon ◽  
...  

Background:Neutrophils have been described as potent antigen-presenting cells able to activate T cells by MHC/TCR interaction and costimulatory molecules in tumor immunity. However, little is known about the direct interaction between neutrophils and CD4 T cells with respect to systemic lupus erythematosus (SLE). We have previously shown that OX40L expressed by monocytes from SLE patients promote the differentiation of naïve and memory cells into IL21 secreting T cells that are able to help B cells1,2.Objectives:In this study, we investigate OX40L expression on neutrophils from SLE patients and contribution of these OX40L+neutrophils in SLE pathogenesis to modulation of the B cell helper role of CD4 T cells.Methods:Surface expression of co-stimulatory molecules (OX40L, ICOSL, GITRL, 4-1BBL) on neutrophils from SLE patients and healthy donors (HD) was measured by flow cytometry (FC). Neutrophils from HD were stimulated with TLR7 or TLR8 agonists and IFNα after 5 hours of culture, OX40L expression was measured by FC and Western Blotting. CD4 T cells were cultured with the stimulated neutrophils for 3 days. At the end of the co-culture, percentages of IL21-expressing T follicular (Tfh) and peripheral helper (Tph) cells measured by FC. These generated T cells were also cultured in the presence of memory B cells. After 5 days of co-culture, plasmablast generation and Ig levels were assessed by FC and ELISA, respectively. Inhibition of OX40-OX40L interaction in vitro was achieved using ISB 830, a novel anti-OX40 mAb currently used in clinical trials.Results:Among the co-stimulatory molecules tested, percentages of OX40L+neutrophils in SLE (n=54) were increased compared to HD (n=25)(mean + SD: HD = 1,34%±1.62 vs SLE = 4,53%±8.1; p=0.29). OX40L expression positively correlated with SLE disease activity score (SLEDAI) (p = 0,04; r = 0,31) and with anti-DNA antibodies (p= 0,04, r = 0,33). Of note, the percentage of OX40L+neutrophils was higher in anti-sm-RNP+patients (n=16, mean= 9%±9.8), compared to anti-sm-RNP-patients (n=27, mean = 1,4%±2.5; p = 0,02). The percentage of OX40L+neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or IFNα priming followed by TLR7 agonist. When memory CD4 T cells were cultured in the presence of TLR8-stimulated neutrophils, the proportion of IL21-expressing Tfh (CXCR5+PD1+) and Tph (CXCR5-PD1hi) were increased, compared to culture with unstimulated neutrophils. This process was dependent on OX40-OX40L interactions, since in vitro treatment with the anti-OX40 blocking antibody ISB 830, inhibited the differentiation of memory T cells into Tfh and Tph. Both generated Tfh and Tph were able to promote the differentiation of memory B cells into Ig-secreting plasmablasts.Conclusion:Our results disclose an unprecedented phenomenon where cross-talk between TLR7/8-activated neutrophils and CD4 lymphocytes operates through OX40L-OX40 costimulation, and neutrophils promote the differentiation of pro-inflammatory Tfh and Tph, as well as IL21 production. Therefore, OX40L/OX40 should be considered as a potentially therapeutic axis in SLE patients.References:[1]Jacquemin et al. Immunity 2015;[2]Jacquemin et al. JCI Insight 2018Disclosure of Interests:Angela Pappalardo Grant/research support from: Ichnos Sciences, Elodie Wojciechowski: None declared, Itsaso Odriozola: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Estibaliz Lazaro: None declared, Marie-Agnes Doucey Employee of: Ichnos Sciences, Lamine Mbow Employee of: Ichnos Sciences, Christophe Richez Consultant of: Abbvie, Amgen, Mylan, Pfizer, Sandoz and UCB., Patrick Blanco Grant/research support from: Ichnos Sciences


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 343.2-343
Author(s):  
H. Hao ◽  
S. Nakayamada ◽  
Y. Kaoru ◽  
N. Ohkubo ◽  
S. Iwata ◽  
...  

Background:Systemic lupus erythematosus (SLE) is a complex polygenic autoimmune disease characterized by immune-system aberrations. Among several types of immune cells, T follicular helper (Tfh) cells promote autoantibody production, whereas T follicular regulatory (Tfr) cells suppress Tfh-mediated antibody responses.(1)Objectives:To identify the characteristics of Tfr cells and to elucidate the mechanisms of conversion of Tfh cells to Tfr cells, we probed the phenotype of T helper cells in patients with SLE and underlying epigenetic modifications by cytokine-induced signal transducer and activators of transcription (STAT) family factors.Methods:Peripheral blood mononuclear cells from SLE patients (n=44) and healthy donors (HD; n=26) were analyzed by flow cytometry. Memory Tfh cells were sorted and cultured under stimulation with T cell receptor and various cytokines. Expression of characteristic markers and phosphorylation of STATs (p-STATs) were analyzed by flow cytometry and quantitation PCR. Histone modifications were evaluated by chromatin immunoprecipitation.Results:The proportion of CXCR5+FoxP3+Tfr cells in CD4+T cells tended to increase (2.1% vs 1.7%, p=0.17); however, that of CD4+CD45RA-FoxP3hiactivated Tfr cells in Tfr cells was decreased (4.8% vs 7.1%, p<0.05), while CD4+CD45RA-FoxP3lownon-suppressive Tfr cells was increased (50.1% vs 38.2%, p<0.01) in SLE compared to HD. The percentage of PD-1hiactivated Tfh cells was significantly higher in SLE compared to HD (15.7% vs 5.9%, p<0.01). Furthermore, active patients had a higher ratio of activated Tfh/Tfr cells compared to inactive patients. In vitro study showed that IL-2, but not other cytokines such as TGF-β1, IL-12, IL-27, and IL-35, induced the conversion of memory Tfh cells to functional Tfr cells characterized by CXCR5+Bcl6+Foxp3hipSTAT3+pSTAT5+cells. The loci ofFOXP3at STAT binding sites were marked by bivalent histone modifications. After IL-2 stimulation, STAT5 directly bound on FOXP3 gene loci accompanied by suppressing H3K27me3. Finally, we found that serum level of IL-2 was decreased in SLE and that stimulation with IL-2 suppressed the generation of CD38+CD27+B cells by ex vivo coculture assay using Tfh cells and B cells isolated from human blood.Conclusion:Our findings indicated that the regulatory function of Tfr cells is impaired due to the low ability of IL-2 production and that IL-2 restores the function of Tfr cells through conversion of Tfh cells to Tfr cells in SLE. Thus, the reinstatement of the balance between Tfh and Tfr cells will provide important therapeutic approaches for SLE.References:[1]Deng J, Wei Y, Fonseca VR, et al. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol. 2019; 15 (8): 475-90.Disclosure of Interests: :He Hao: None declared, Shingo Nakayamada Grant/research support from: Mitsubishi-Tanabe, Takeda, Novartis and MSD, Speakers bureau: Bristol-Myers, Sanofi, Abbvie, Eisai, Eli Lilly, Chugai, Asahi-kasei and Pfizer, Yamagata Kaoru: None declared, Naoaki Ohkubo: None declared, Shigeru Iwata: None declared, Yoshiya Tanaka Grant/research support from: Asahi-kasei, Astellas, Mitsubishi-Tanabe, Chugai, Takeda, Sanofi, Bristol-Myers, UCB, Daiichi-Sankyo, Eisai, Pfizer, and Ono, Consultant of: Abbvie, Astellas, Bristol-Myers Squibb, Eli Lilly, Pfizer, Speakers bureau: Daiichi-Sankyo, Astellas, Chugai, Eli Lilly, Pfizer, AbbVie, YL Biologics, Bristol-Myers, Takeda, Mitsubishi-Tanabe, Novartis, Eisai, Janssen, Sanofi, UCB, and Teijin


2015 ◽  
Vol 75 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Sarah A Jones ◽  
Andrew E J Toh ◽  
Dragana Odobasic ◽  
Marie-Anne Virginie Oudin ◽  
Qiang Cheng ◽  
...  

ObjectivesSystemic lupus erythematosus (SLE) is a serious multisystem autoimmune disease, mediated by disrupted B cell quiescence and typically treated with glucocorticoids. We studied whether B cells in SLE are regulated by the glucocorticoid-induced leucine zipper (GILZ) protein, an endogenous mediator of anti-inflammatory effects of glucocorticoids.MethodsWe conducted a study of GILZ expression in blood mononuclear cells of patients with SLE, performed in vitro analyses of GILZ function in mouse and human B cells, assessed the contributions of GILZ to autoimmunity in mice, and used the nitrophenol coupled to keyhole limpet haemocyanin model of immunisation in mice.ResultsReduced B cell GILZ was observed in patients with SLE and lupus-prone mice, and impaired induction of GILZ in patients with SLE receiving glucocorticoids was associated with increased disease activity. GILZ was downregulated in naïve B cells upon stimulation in vitro and in germinal centre B cells, which contained less enrichment of H3K4me3 at the GILZ promoter compared with naïve and memory B cells. Mice lacking GILZ spontaneously developed lupus-like autoimmunity, and GILZ deficiency resulted in excessive B cell responses to T-dependent stimulation. Accordingly, loss of GILZ in naïve B cells allowed upregulation of multiple genes that promote the germinal centre B cell phenotype, including lupus susceptibility genes and genes involved in cell survival and proliferation. Finally, treatment of human B cells with a cell-permeable GILZ fusion protein potently suppressed their responsiveness to T-dependent stimuli.ConclusionsOur findings demonstrated that GILZ is a non-redundant regulator of B cell activity, with important potential clinical implications in SLE.


2009 ◽  
Vol 37 (1) ◽  
pp. 45-52 ◽  
Author(s):  
HUI-TING LEE ◽  
YU-MING SHIAO ◽  
TSAI-HUNG WU ◽  
WEI-SHENG CHEN ◽  
YUNG-HSIANG HSU ◽  
...  

Objective.Systemic lupus erythematosus (SLE) is a prototype of systemic autoimmune disease in which cytokines such as B lymphocyte chemoattractant (BLC, or CXC motif ligand 13, CXCL13) may play important roles in pathogenesis. We investigated the implications of CXCL13 in SLE and lupus nephritis.Methods.Serum samples from 425 patients with SLE and 106 healthy control individuals were analyzed for the concentration of CXCL13 by ELISA. Tissue expression of CXCL13 and its corresponding receptor CXCR5 were observed in lupus kidney. The CXCR5-bearing B cells in SLE patients were analyzed by flow cytometry.Results.Serum levels of CXCL13 were higher in SLE patients compared to controls. SLE patients with lupus nephritis or positive anti-dsDNA antibodies had significantly higher serum CXCL13 levels. The peripheral venous blood B cells that bear CXCR5 were more abundant in SLE patients as detected by flow cytometry. CXCR5 and CXCL13 were highly expressed in the renal cortex from patients with lupus nephritis.Conclusions.Our results suggest that BLC/CXCL13 as well as its corresponding receptor, CXCR5, may play important roles in the pathogenesis of SLE and in lupus nephritis.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Syuichi Koarada ◽  
Yoshifumi Tada ◽  
Rie Suematsu ◽  
Sachiko Soejima ◽  
Hisako Inoue ◽  
...  

This study aimed to investigate phenotype of RP105(−) B cell subsets in patients with systemic lupus erythematosus (SLE). Flow cytometry was used for phenotyping RP105-negaive B cell subsets. Based on CD19, RP105, and CD138 expression, RP105(−) B cells consist of at least 5 subsets of late B cells, including CD19(+)RP105(int), CD19(+) RP105(−), CD19(low) RP105(−) CD138(−), CD19(low) RP105(−)CD138(int), and CD19(low) RP105(−) CD138(++) B cells. Especially, CD19(+)RP105(int) and CD19(low) RP105(−)CD138(int) B cells are significantly larger than other RP105(−) B cell subsets in SLE. By comparison of RP105(−) B cell subsets between patients with SLE and normal subjects, these subsets were detectable even in normal subjects, but the percentages of RP105(−) B cell subsets were significantly larger in SLE. The phenotypic analysis of RP105(−) B cell subsets suggests dysregulation of later B cell subsets in SLE and may provide new insights into understanding regulation of B cells in human SLE.


2021 ◽  
Vol 8 (1) ◽  
pp. e000445
Author(s):  
Felice Rivellese ◽  
Sotiria Manou-Stathopoulou ◽  
Daniele Mauro ◽  
Katriona Goldmann ◽  
Debasish Pyne ◽  
...  

ObjectiveTo evaluate the effects of targeting Ikaros and Aiolos by cereblon modulator iberdomide on the activation and differentiation of B-cells from patients with systemic lupus erythematosus (SLE).MethodsCD19+ B-cells isolated from the peripheral blood of patients with SLE (n=41) were cultured with TLR7 ligand resiquimod ±IFNα together with iberdomide or control from day 0 (n=16). Additionally, in vitro B-cell differentiation was induced by stimulation with IL-2/IL-10/IL-15/CD40L/resiquimod with iberdomide or control, given at day 0 or at day 4. At day 5, immunoglobulins were measured by ELISA and cells analysed by flow cytometry. RNA-Seq was performed on fluorescence-activated cell-sorted CD27-IgD+ naïve-B-cells and CD20lowCD27+CD38+ plasmablasts to investigate the transcriptional consequences of iberdomide.ResultsIberdomide significantly inhibited the TLR7 and IFNα-mediated production of immunoglobulins from SLE B-cells and the production of antinuclear antibodies as well as significantly reducing the number of CD27+CD38+ plasmablasts (0.3±0.18, vehicle 1.01±0.56, p=0.011) and CD138+ plasma cells (0.12±0.06, vehicle 0.28±0.02, p=0.03). Additionally, treatment with iberdomide from day 0 significantly inhibited the differentiation of SLE B-cells into plasmablasts (6.4±13.5 vs vehicle 34.9±20.1, p=0.013) and antibody production. When given at later stages of differentiation, iberdomide did not affect the numbers of plasmablasts or the production of antibodies; however, it induced a significant modulation of gene expression involving IKZF1 and IKZF3 transcriptional programmes in both naïve B-cells and plasmablasts (400 and 461 differentially modulated genes, respectively, false discovery rate<0.05).ConclusionThese results demonstrate the relevance of Ikaros and Aiolos as therapeutic targets in SLE due to their ability to modulate B cell activation and differentiation downstream of TLR7.


2007 ◽  
Vol 67 (4) ◽  
pp. 450-457 ◽  
Author(s):  
A M Jacobi ◽  
D M Goldenberg ◽  
F Hiepe ◽  
A Radbruch ◽  
G R Burmester ◽  
...  

Objective:B lymphocytes have been implicated in the pathogenesis of lupus and other autoimmune diseases, resulting in the introduction of B cell-directed therapies. Epratuzumab, a humanised anti-CD22 monoclonal antibody, is currently in clinical trials, although its effects on patients’ B cells are not completely understood.Methods:This study analysed the in vivo effect of epratuzumab on peripheral B cell subsets in 12 patients with systemic lupus erythematosus, and also addressed the in vitro effects of the drug by analysing anti-immunoglobulin-induced proliferation of isolated B cells obtained from the peripheral blood of 11 additional patients with lupus and seven normal subjects.Results:Upon treatment, a pronounced reduction of CD27– B cells and CD22 surface expression on CD27– B cells was observed, suggesting that these cells, which mainly comprise naïve and transitional B cells, are preferentially targeted by epratuzumab in vivo. The results of in vitro studies indicate additional regulatory effects of the drug by reducing the enhanced activation and proliferation of anti-immunoglobulin-stimulated lupus B cells after co-incubation with CD40L or CpG. Epratuzumab inhibited the proliferation of B cells from patients with systemic lupus erythematosus but not normal B cells under all culture conditions.Conclusions:Epratuzumab preferentially modulates the exaggerated activation and proliferation of B cells from patients with lupus in contrast to normal subjects, thus suggesting that epratuzumab might offer a new therapeutic option for patients with systemic lupus erythematosus, as enhanced B cell activation is a hallmark of this disease.


Sign in / Sign up

Export Citation Format

Share Document