The Determination of the Period-Reactivity Relation and Open-Loop Reactor Transfer Function From Rod-Drop Decay Data

1961 ◽  
Vol 11 (4) ◽  
pp. 405-414 ◽  
Author(s):  
W. J. Fader ◽  
R. C. Harrison
2021 ◽  
Vol 247 ◽  
pp. 21009
Author(s):  
Sebastian Hübner ◽  
Alexander Knospe ◽  
Marco Viebach ◽  
Carsten Lange ◽  
Antonio Hurtado

The transfer function is a basic characteristic of every nuclear reactor. It describes how a perturbation at a given place and time influences the neutron flux. In case of a known perturbation, the determination of characteristic reactor parameters is possible. The present paper shows an experimental method to determine the gain of the zero-power reactor transfer function (ZPTF) of the AKR-2 reactor at TU Dresden and the comparison to the theoretical shape of the ZPTF derived from kinetic parameters simulated with MCNP. For the experiments, a high-precision linear motor axis is used to insert an oscillating perturbation acting at frequencies smaller than the lower bound of the plateau region of the ZPTF. For higher frequencies, a rotating absorber is used. This device emulates an absorber of variable strength. The reactor response is detected with a He-3 counter. The data evaluation shows good agreement between measured and corresponding theoretical values of the gain of the ZPTF.


2012 ◽  
Vol 22 (4) ◽  
pp. 451-465 ◽  
Author(s):  
Tadeusz Kaczorek

A new modified state variable diagram method is proposed for determination of positive realizations with reduced numbers of delays and without delays of linear discrete-time systems for a given transfer function. Sufficient conditions for the existence of the positive realizations of given proper transfer function are established. It is shown that there exists a positive realization with reduced numbers of delays if there exists a positive realization without delays but with greater dimension. The proposed methods are demonstrated on a numerical example.


2021 ◽  
pp. 107754632110337
Author(s):  
Arup Maji ◽  
Fernando Moreu ◽  
James Woodall ◽  
Maimuna Hossain

Multi-Input-Multi-Output vibration testing typically requires the determination of inputs to achieve desired response at multiple locations. First, the responses due to each input are quantified in terms of complex transfer functions in the frequency domain. In this study, two Inputs and five Responses were used leading to a 5 × 2 transfer function matrix. Inputs corresponding to the desired Responses are then computed by inversion of the rectangular matrix using Pseudo-Inverse techniques that involve least-squared solutions. It is important to understand and quantify the various sources of errors in this process toward improved implementation of Multi-Input-Multi-Output testing. In this article, tests on a cantilever beam with two actuators (input controlled smart shakers) were used as Inputs while acceleration Responses were measured at five locations including the two input locations. Variation among tests was quantified including its impact on transfer functions across the relevant frequency domain. Accuracy of linear superposition of the influence of two actuators was quantified to investigate the influence of relative phase information. Finally, the accuracy of the Multi-Input-Multi-Output inversion process was investigated while varying the number of Responses from 2 (square transfer function matrix) to 5 (full-rectangular transfer function matrix). Results were examined in the context of the resonances and anti-resonances of the system as well as the ability of the actuators to provide actuation energy across the domain. Improved understanding of the sources of uncertainty from this study can be used for more complex Multi-Input-Multi-Output experiments.


2012 ◽  
Vol 60 (3) ◽  
pp. 605-616
Author(s):  
T. Kaczorek

Abstract The problem of existence and determination of the set of positive asymptotically stable realizations of a proper transfer function of linear discrete-time systems is formulated and solved. Necessary and sufficient conditions for existence of the set of the realizations are established. A procedure for computation of the set of realizations are proposed and illustrated by numerical examples.


2016 ◽  
Vol 109 ◽  
pp. 146-150 ◽  
Author(s):  
Aurelian Luca ◽  
Maria Sahagia ◽  
Mihail-Razvan Ioan ◽  
Andrei Antohe ◽  
Beatris Luminita Savu

Sign in / Sign up

Export Citation Format

Share Document