Synthesis and evaluation of novel phosphasugar anticancer agents

2011 ◽  
Vol 84 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Mayumi Yamaoka ◽  
Mitsuji Yamashita ◽  
Manabu Yamada ◽  
Michio Fujie ◽  
Keita Kiyofuji ◽  
...  

Starting materials of phosphasugars, 1-phenyl-2-phospholene 1-oxides, were prepared from dienes and phenylphosphonous dichloride (dichlorophenylphosphine). Several substituted novel phosphasugars (3- or 4-halo-substituted)-1-phenyl-2-phospholene 1-oxides as well as 1-phenyl-2-phospholane 1-oxides were prepared from 2-phospholenes. The synthesized compounds were evaluated for their antitumor activities against the leukemia cell lines (U937 and K562) by in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. 2,3,4-Tribromo-3-methyl-1-phenylphospholane 1-oxide showed superior antitumor activity against U937 and K562 cell lines in a comparative evaluation with Glivec. The analysis by flow cytometry implied that 2,3-dibromo-3-methyl-1-phenylphospholane 1-oxide induced apoptosis to leukemia cell lines.

1993 ◽  
Vol 17 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Yasuhiko Kano ◽  
Miyuki Akutsu ◽  
Kenichi Suzuki ◽  
Minoru Yoshida

1995 ◽  
Vol 19 (10) ◽  
pp. 681-691 ◽  
Author(s):  
H.G. Drexler ◽  
H. Quentmeier ◽  
R.A.F. MacLeod ◽  
C.C. Uphoff ◽  
Z.-B. Hu

Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1497-1504 ◽  
Author(s):  
Zhu-Gang Wang ◽  
Roberta Rivi ◽  
Laurent Delva ◽  
Andrea König ◽  
David A. Scheinberg ◽  
...  

Abstract Inorganic arsenic trioxide (As2O3) and the organic arsenical, melarsoprol, were recently shown to inhibit growth and induce apoptosis in NB4 acute promyelocytic leukemia (APL) and chronic B-cell leukemia cell lines, respectively. As2O3 has been proposed to principally target PML and PML-RAR proteins in APL cells. We investigated the activity of As2O3 and melarsoprol in a broader context encompassing various myeloid leukemia cell lines, including the APL cell line NB4-306 (a retinoic acid–resistant cell line derived from NB4 that no longer expresses the intact PML-RAR fusion protein), HL60, KG-1, and the myelomonocytic cell line U937. To examine the role of PML in mediating arsenical activity, we also tested these agents using murine embryonic fibroblasts (MEFs) and bone marrow (BM) progenitors in which the PML gene had been inactivated by homologous recombination. Unexpectedly, we found that both compounds inhibited cell growth, induced apoptosis, and downregulated bcl-2 protein in all cell lines tested. Melarsoprol was more potent than As2O3 at equimolar concentrations ranging from 10−7 to 10−5 mol/L. As2O3 relocalized PML and PML-RAR onto nuclear bodies, which was followed by PML degradation in NB4 as well as in HL60 and U937 cell lines. Although melarsoprol was more potent in inhibiting growth and inducing apoptosis, it did not affect PML and/or PML-RAR nuclear localization. Moreover, both As2O3 and melarsoprol comparably inhibited growth and induced apoptosis of PML+/+ and PML−/− MEFs, and inhibited colony-forming unit erythroid (CFU-E) and CFU granulocyte-monocyte formation in BM cultures of PML+/+ and PML−/− progenitors. Together, these results show that As2O3 and melarsoprol inhibit growth and induce apoptosis independent of both PML and PML-RAR expression in a variety of myeloid leukemia cell lines, and suggest that these agents may be more broadly used for treatment of leukemias other than APL. © 1998 by The American Society of Hematology.


Radiology ◽  
1981 ◽  
Vol 139 (2) ◽  
pp. 485-487 ◽  
Author(s):  
R R Weichselbaum ◽  
J S Greenberger ◽  
A Schmidt ◽  
A Karpas ◽  
W C Moloney ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2605-2605
Author(s):  
Lars Bullinger ◽  
Konstanze Dohner ◽  
Richard F. Schlenk ◽  
Frank G. Rucker ◽  
Jonathan R. Pollack ◽  
...  

Abstract Inhibitors of histone deacetylases (HDACIs) like valproic acid (VPA) display activity in murine leukemia models, and induce tumor-selective cytoxicity against blasts from patients with acute myeloid leukemia (AML). However, despite of the existing knowledge of the potential function of HDACIs, there remain many unsolved questions especially regarding the factors that determine whether a cancer cell undergoes cell cycle arrest, differentiation, or death in response to HDACIs. Furthermore, there is still limited data on HDACIs effects in vivo, as well as HDACIs function in combination with standard induction chemotherapy, as most studies evaluated HDACIs as single agent in vitro. Thus, our first goal was to determine a VPA response signature in different myeloid leukemia cell lines in vitro, followed by an in vivo analysis of VPA effects in blasts from adult de novo AML patients entered within two randomized multicenter treatment trials of the German-Austrian AML Study Group. To define an VPA in vitro “response signature” we profiled gene expression in myeloid leukemia cell lines (HL-60, NB-4, HEL-1, CMK and K-562) following 48 hours of VPA treatment by using DNA Microarray technology. In accordance with previous studies in vitro VPA treatment of myeloid cell lines induced the expression of the cyclin-dependent kinase inhibitors CDKN1A and CDKN2D coding for p21 and p19, respectively. Supervised analyses revealed many genes known to be associated with a G1 arrest. In all cell lines except for CMK we examined an up-regulation of TNFSF10 coding for TRAIL, as well as differential regulation of other genes involved in apoptosis. Furthermore, gene set enrichment analyses showed a significant down-regulation of genes involved in DNA metabolism and DNA repair. Next, we evaluated the VPA effects on gene expression in AML samples collected within the AMLSG 07-04 trial for younger (age<60yrs) and within the AMLSG 06-04 trial for older adults (age>60yrs), in which patients are randomized to receive standard induction chemotherapy (idarubicine, cytarabine, and etoposide = ICE) with or without concomitant VPA. We profiled gene expression in diagnostic AML blasts and following 48 hours of treatment with ICE or ICE/VPA. First results from our ongoing analysis of in vivo VPA treated samples are in accordance with our cell line experiments as e.g. we also see an induction of CDKN1A expression. However, the picture observed is less homogenous as concomitant administration of ICE, as well as other factors, like e.g. VPA serum levels, might substantially influence the in vivo VPA response. Nevertheless, our data are likely to provide new insights into the VPA effect in vivo, and this study may proof to be useful to predict AML patients likely to benefit from VPA treatment. To achieve this goal, we are currently analyzing additional samples, and we are planning to correlate gene expression findings with histone acetylation status, VPA serum levels, cytogenetic, and molecular genetic data.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1497-1504 ◽  
Author(s):  
Zhu-Gang Wang ◽  
Roberta Rivi ◽  
Laurent Delva ◽  
Andrea König ◽  
David A. Scheinberg ◽  
...  

Inorganic arsenic trioxide (As2O3) and the organic arsenical, melarsoprol, were recently shown to inhibit growth and induce apoptosis in NB4 acute promyelocytic leukemia (APL) and chronic B-cell leukemia cell lines, respectively. As2O3 has been proposed to principally target PML and PML-RAR proteins in APL cells. We investigated the activity of As2O3 and melarsoprol in a broader context encompassing various myeloid leukemia cell lines, including the APL cell line NB4-306 (a retinoic acid–resistant cell line derived from NB4 that no longer expresses the intact PML-RAR fusion protein), HL60, KG-1, and the myelomonocytic cell line U937. To examine the role of PML in mediating arsenical activity, we also tested these agents using murine embryonic fibroblasts (MEFs) and bone marrow (BM) progenitors in which the PML gene had been inactivated by homologous recombination. Unexpectedly, we found that both compounds inhibited cell growth, induced apoptosis, and downregulated bcl-2 protein in all cell lines tested. Melarsoprol was more potent than As2O3 at equimolar concentrations ranging from 10−7 to 10−5 mol/L. As2O3 relocalized PML and PML-RAR onto nuclear bodies, which was followed by PML degradation in NB4 as well as in HL60 and U937 cell lines. Although melarsoprol was more potent in inhibiting growth and inducing apoptosis, it did not affect PML and/or PML-RAR nuclear localization. Moreover, both As2O3 and melarsoprol comparably inhibited growth and induced apoptosis of PML+/+ and PML−/− MEFs, and inhibited colony-forming unit erythroid (CFU-E) and CFU granulocyte-monocyte formation in BM cultures of PML+/+ and PML−/− progenitors. Together, these results show that As2O3 and melarsoprol inhibit growth and induce apoptosis independent of both PML and PML-RAR expression in a variety of myeloid leukemia cell lines, and suggest that these agents may be more broadly used for treatment of leukemias other than APL. © 1998 by The American Society of Hematology.


2012 ◽  
Vol 64 (1) ◽  
pp. 100-110 ◽  
Author(s):  
Haytham Dahlawi ◽  
Nicola Jordan-Mahy ◽  
Malcolm R. Clench ◽  
Christine L. Le Maitre

Virology ◽  
1980 ◽  
Vol 105 (2) ◽  
pp. 425-435 ◽  
Author(s):  
Joel S. Greenberger ◽  
Robert J. Eckner ◽  
Wolfram Ostertag ◽  
Giulia Colletta ◽  
Sandra Boschetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document