Expression of Major Histocompatibility Complex Class II Antigens in Porcine Leptospiral Nephritis

2009 ◽  
Vol 46 (5) ◽  
pp. 800-809 ◽  
Author(s):  
E. Radaelli ◽  
F. Del Piero ◽  
L. Aresu ◽  
F. Sciarrone ◽  
N. Vicari ◽  
...  

Class II major histocompatibility complex (MHCII) is required for the presentation of antigens to CD4 helper T cells. During nephritis, not only primary antigen presenting cells such as histiocytes and lymphocytes, but also cytokine-stimulated tubular epithelial cells express MHCII. Leptospirosis in fattening pigs is characterized by several degrees of nephritis, from absence of lesions to severe multifocal tubulo-interstitial inflammation. Renal tissue from 20 8-month-old pigs with spontaneous nephritis and 6 control pigs without renal lesions were investigated for leptospirosis by indirect immunohistochemistry (IHC) and polymerase chain reaction (PCR). IHC for MHCII also was performed on renal samples. Serum samples were tested for different serovars of Leptospira interrogans. Control pigs were free of interstitial nephritis and negative for leptospirosis by all tests. In pigs with nephritis, serology was positive for serovar Pomona in 19/20 pigs. In 16 of these 19 pigs, leptospiral renal infection was confirmed by PCR and/or indirect IHC. Nephritic lesions were classified histologically into perivascular lymphocytic (4 pigs), lymphofollicular (6 pigs), lymphohistiocytic (8 pigs), and neutrophilic (2 pigs) pattern. MHCII expression by histiocytes and lymphocytes was observed in all lesions. Prominent MHCII expression in regenerating tubular epithelium was observed in lymphofollicular and lymphohistiocytic nephritis. No tubular colocalization between leptospiral and MHCII antigen was observed. Results suggest that during leptospiral nephritis, MHCII contributes to the intensity of the inflammatory response. Furthermore de novo MHCII expression in regenerating tubules may play a role in the defence mechanism against leptospiral tubular colonization.

1997 ◽  
Vol 186 (4) ◽  
pp. 549-560 ◽  
Author(s):  
José A. Villadangos ◽  
Richard J. Riese ◽  
Christoph Peters ◽  
Harold A. Chapman ◽  
Hidde L. Ploegh

Antigen-presenting cells (APC) degrade endocytosed antigens into peptides that are bound and presented to T cells by major histocompatibility complex (MHC) class II molecules. Class II molecules are delivered to endocytic compartments by the class II accessory molecule invariant chain (Ii), which itself must be eliminated to allow peptide binding. The cellular location of Ii degradation, as well as the enzymology of this event, are important in determining the sets of antigenic peptides that will bind to class II molecules. Here, we show that the cysteine protease cathepsin S acts in a concerted fashion with other cysteine and noncysteine proteases to degrade mouse Ii in a stepwise fashion. Inactivation of cysteine proteases results in incomplete degradation of Ii, but the extent to which peptide loading is blocked by such treatment varies widely among MHC class II allelic products. These observations suggest that, first, class II molecules associated with larger Ii remnants can be converted efficiently to class II–peptide complexes and, second, that most class II–associated peptides can still be generated in cells treated with inhibitors of cysteine proteases. Surprisingly, maturation of MHC class II in mice deficient in cathepsin D is unaffected, showing that this major aspartyl protease is not involved in degradation of Ii or in generation of the bulk of antigenic peptides.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Marie Klumplerova ◽  
Petra Splichalova ◽  
Jan Oppelt ◽  
Jan Futas ◽  
Aneta Kohutova ◽  
...  

Abstract Background The mammalian Major Histocompatibility Complex (MHC) is a genetic region containing highly polymorphic genes with immunological functions. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. The MHC class II sub-region contains genes expressed in antigen presenting cells. The antigen binding site is encoded by the second exon of genes encoding antigen presenting molecules. The exon 2 sequences of these MHC genes have evolved under the selective pressure of pathogens. Interspecific differences can be observed in the class II sub-region. The family Equidae includes a variety of domesticated, and free-ranging species inhabiting a range of habitats exposed to different pathogens and represents a model for studying this important part of the immunogenome. While equine MHC class II DRA and DQA loci have received attention, the genetic diversity and effects of selection on DRB and DQB loci have been largely overlooked. This study aimed to provide the first in-depth analysis of the MHC class II DRB and DQB loci in the Equidae family. Results Three DRB and two DQB genes were identified in the genomes of all equids. The genes DRB2, DRB3 and DQB3 showed high sequence conservation, while polymorphisms were more frequent at DRB1 and DQB1 across all species analyzed. DQB2 was not found in the genome of the Asiatic asses Equus hemionus kulan and E. h. onager. The bioinformatic analysis of non-zero-coverage-bases of DRB and DQB genes in 14 equine individual genomes revealed differences among individual genes. Evidence for recombination was found for DRB1, DRB2, DQB1 and DQB2 genes. Trans-species allele sharing was identified in all genes except DRB1. Site-specific selection analysis predicted genes evolving under positive selection both at DRB and DQB loci. No selected amino acid sites were identified in DQB3. Conclusions The organization of the MHC class II sub-region of equids is similar across all species of the family. Genomic sequences, along with phylogenetic trees suggesting effects of selection as well as trans-species polymorphism support the contention that pathogen-driven positive selection has shaped the MHC class II DRB/DQB sub-regions in the Equidae.


2001 ◽  
Vol 21 (17) ◽  
pp. 5699-5709 ◽  
Author(s):  
Marie Peretti ◽  
Jean Villard ◽  
Emmanuèle Barras ◽  
Madeleine Zufferey ◽  
Walter Reith

ABSTRACT Major histocompatibility complex class II (MHCII) molecules play a pivotal role in the immune system because they direct the development and activation of CD4+ T cells. There are three human MHCII isotypes, HLA-DR, HLA-DQ, and HLA-DP. Key transcription factors controlling MHCII genes have been identified by virtue of the fact that they are mutated in a hereditary immunodeficiency resulting from a lack of MHCII expression. RFXAP—one of the factors affected in this disease—is a subunit of RFX, a DNA-binding complex that recognizes the X box present in all MHCII promoters. To facilitate identification of conserved regions in RFXAP, we isolated the mouse gene. We then delimited conserved domains required to restore endogenous MHCII expression in cell lines lacking a functionalRFXAP gene. Surprisingly, we found that 80% of RFXAP is dispensable for the reactivation of DR expression. Only a short C-terminal segment of the protein is essential for this isotype. In contrast, optimal expression of DQ and DP requires a larger C-terminal segment. These results define an RFXAP domain with an MHCII isotype-specific function. Expression of the three MHCII isotypes exhibits a differential requirement for this domain. We show that this is due to a differential dependence on this domain for promoter occupation and recruitment of the coactivator CIITA in vivo.


1995 ◽  
Vol 182 (6) ◽  
pp. 1793-1799 ◽  
Author(s):  
C A Siegrist ◽  
E Martinez-Soria ◽  
I Kern ◽  
B Mach

Presentation of exogenous protein antigens to T lymphocytes is based on the intersection of two complex pathways: (a) synthesis, assembly, and transport of major histocompatibility complex (MHC) class II-invariant chain complexes from the endoplasmic reticulum to a specialized endosomal compartment, and (b) endocytosis, denaturation, and proteolysis of antigens followed by loading of antigenic peptides onto newly synthesized MHC class II molecules. It is believed that expression of MHC class II heterodimers, invariant chain and human leukocyte antigen-DM is both necessary and sufficient to reconstitute a functional MHC class II loading compartment in antigen-presenting cells. Expression of each of these essential molecules is under the control of the MHC class II transactivator CIITA. Unexpectedly, however, whereas interferon gamma stimulation does confer effective antigen-processing function to nonprofessional antigen presenting cells, such as melanoma cells, expression of the CIITA transactivator alone is not sufficient. Activation of antigen-specific T cells thus requires additional CIITA-independent factor(s), and such factor(s) can be induced by interferon gamma.


Sign in / Sign up

Export Citation Format

Share Document