Discovery of new antimetastatic agents: Review of in vitro and in vivo screening methods

Author(s):  
H.-F. Li ◽  
X.-W. Wang ◽  
R.-G. Zhang ◽  
j.-H. Yuan ◽  
Y. Xie ◽  
...  
2019 ◽  
Vol 15 (1) ◽  
pp. 63-70
Author(s):  
Shiv Dev Singh ◽  
Arvind Kumar ◽  
Firoz Babar ◽  
Neetu Sachan ◽  
Arun Kumar Sharma

Background: Thienopyrimidines are the bioisoster of quinazoline and unlike quinazoline exist in three isomeric forms corresponding to the three possible types annulation of thiophene to the pyrimidine ring viz thieno[2,3-d] pyrimidine, thieno[3,2-d] pyrimidine and thieno[3,4-d]pyrimidine. Heterocyclic containing the thienopyrimidinone moiety exhibits various pronounced activities such as anti-hypertensive, analgesic and anti-inflammatory, antiviral, platelet aggregation inhibitory, antiprotozoal bronchodilatory, phosphodiesterase inhibitory, antihistaminic, antipsychotic and antimicrobial activity. Objective: Synthesis of novel 3(N,N-dialkylamino)alkyl/phenyl substituted thieno[2,3-d]pyrimidinones as H1-anti-histaminic and antimicrobial agents. Methods: A series of 3-[(N,N-dialkylamino)alkyl/phenyl]-2-(1H)thioxo-5,6,7,8-tetrahydrobenzo(b) thieno(2,3-d)pyrimidine-4(3H)-ones[4a-d], their oxo analogous [5a-d] and 3-[(N,N-dialkylamino)alkyl]- 2-chlorophenyl-5,6,7,8-tetrahydrobenzo(b)thieno(2,3-d)pyrimidine- 4 (3H)-ones[6a-d]derivative were synthesized from 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophene-3-carboxylic acid by nucleophilic substitution of different N,N-dialkyl alkylene/phenylene diamines on activated 3-acylchloride moiety followed by cyclocondensation with carbon disulfide and ethanolic potassium hydroxide to get [4a-d] and in second reaction by condensation with 4-chlorobenzoyl chloride to get [6a-d] by single pot novel innovative route. The oxo analogous [5a-d] were prepared by treating derivatives [4a-d] with potassium permagnate in ethanolic KOH. The synthesized compound were evaluated for H1-antihistaminic and antimicrobial activities. Results: All synthesized compounds exhibited significant H1-antihistaminic activity by in vitro and in vivo screening methods and data were verified analytically and statistically. The compound 4a, 4b, 5a and 5b showed significant H1-antihistaminiic activity than the reference standard chlorpheniramine maleate. The compound 6d, 6c, 5c and 4c exhibited significant antimicrobial activity.


2005 ◽  
Vol 77 (1) ◽  
pp. 41-51 ◽  
Author(s):  
A. Gurib-Fakim ◽  
H. Subratty ◽  
F. Narod ◽  
J. Govinden-Soulange ◽  
F. Mahomoodally

The Mauritian population has a long tradition in the use of ethno-medicine, and the practice is still strong, especially in the treatment of minor ailments. Such interest stems from an existing culture, and many “tisanes” are still prepared from plant materials and sold in several markets around the island.This paper will focus on the various chemical/biological screening techniques currently being used to evaluate the biological properties of medicinal plant extracts. Particular emphasis will be put on extraction and various screening for biological/pharmacological properties. Due consideration will be given to the pharmacological approaches that utilize different animal models for the in vitro and in vivo screening of medicinal plant extracts.


2005 ◽  
Vol 89 (1) ◽  
pp. 173-187 ◽  
Author(s):  
Edwin Sonneveld ◽  
Jacoba A. C. Riteco ◽  
Hendrina J. Jansen ◽  
Bart Pieterse ◽  
Abraham Brouwer ◽  
...  
Keyword(s):  

2016 ◽  
pp. 85-92 ◽  
Author(s):  
R. Haidar ◽  
C. Calvo-Garrido ◽  
J. Roudet ◽  
T. Gautier ◽  
A. Deschamps ◽  
...  

2020 ◽  
Author(s):  
Wei Liao ◽  
Wanren Yang ◽  
Yue Zhang ◽  
Fanhong Zeng ◽  
Jiecheng Xu ◽  
...  

Abstract Background: Cancer is the second leading cause of death globally. However, most of the new anti-cancer agents screened by traditional drug screening methods fail in the clinic because of lack of efficacy. One of the reasons for this dilemma is that the two-dimensional (2D) culture cancer cell lines could not represent the in vivo cancer cells well. Fortunately, the development of a three-dimensional (3D) culture technique helps in this problem. Methods: The high-throughput spheroid culture plate was fabricated by using 3D print technique and agarose. 4 hepatocarcinoma (HCC) cell lines were 3D cultured to screen 19 small molecular agents based on the spheroid culture plate. 3D cultured primary HCC cells and tumor-bearing mice model were established to verify the candidate anti-hepatocarcinoma agent. Cell function experiments and western blotting were conducted to explore the anti-hepatocarcinoma mechanism of the candidate agent. Results: Based on the previous study, we established an in vitro 3D drug screening method by using our invented spheroid culture device and found that CUDC-907 can serve as a potent anti-hepatocarcinoma agent. The study data show that CUDC-907 (fimepinostat), a novel dual acting inhibitor of phosphoinositide 3-kinase (PI3K) and histone deacetylase (HDAC), has potent inhibitory effects on HCC cell lines and primary HCC cells in vitro, Animal studies have shown that CUDC-907 can also suppress HCC cells in vivo. Furthermore, we investigated the antitumor mechanism of CUDC-907 in HCC cells. We found that it inhibits the PI3K/AKT/mTOR pathway and downregulates the expression of c-Myc, leading to the suppression of HCC cells. Conclusion: Our results suggest that CUDC-907 can be a candidate anti-HCC drug, and the 3D in vitro drug screening method based on our novel spheroid culture device is promising for drug screening.


2019 ◽  
Vol 20 (14) ◽  
pp. 3428 ◽  
Author(s):  
Sakinah Hassan ◽  
Karin J. Purdie ◽  
Jun Wang ◽  
Catherine A. Harwood ◽  
Charlotte M. Proby ◽  
...  

Background: Cutaneous squamous cell carcinoma (cSCC) incidence continues to rise with increasing morbidity and mortality, with limited treatment options for advanced disease. Future improvements in targeted therapy will rely on advances in genomic/transcriptomic understanding and the use of model systems for basic research. We describe here the panel of 16 primary and metastatic cSCC cell lines developed and characterised over the past three decades in our laboratory in order to provide such a resource for future preclinical research and drug screening. Methods: Primary keratinocytes were isolated from cSCC tumours and metastases, and cell lines were established. These were characterised using short tandem repeat (STR) profiling and genotyped by whole exome sequencing. Multiple in vitro assays were performed to document their morphology, growth characteristics, migration and invasion characteristics, and in vivo xenograft growth. Results: STR profiles of the cSCC lines allow the confirmation of their unique identity. Phylogenetic trees derived from exome sequence analysis of the matched primary and metastatic lines provide insight into the genetic basis of disease progression. The results of in vivo and in vitro analyses allow researchers to select suitable cell lines for specific experimentation. Conclusions: There are few well-characterised cSCC lines available for widespread preclinical experimentation and drug screening. The described cSCC cell line panel provides a critical tool for in vitro and in vivo experimentation.


2011 ◽  
Author(s):  
Jennifer M. Atkinson ◽  
Anang A. Shelat ◽  
Tanya A. Kranenburg ◽  
Angel M. Carcaboso ◽  
Alexander Arnold ◽  
...  

Author(s):  
Shuichi Takayama ◽  
Dongeun Huh ◽  
Jonathan Song ◽  
Wansik Cha ◽  
Yunseok Heo

Many biological studies, drug screening methods, and cellular therapies require culture and manipulation of living cells outside of their natural environment in the body. The gap between the cellular microenvironment in vivo and in vitro, however, poses challenges for obtaining physiologically relevant responses from cells used in basic biological studies or drug screens and for drawing out the maximum functional potential from cells used therapeutically. One of the reasons for this gap is because the fluidic environment of mammalian cells in vivo is microscale and dynamic whereas typical in vitro cultures are macroscopic and static. This presentation will give an overview of efforts in our laboratory to develop microfluidic systems that enable spatio-temporal control of both the chemical and fluid mechanical environment of cells. The technologies and methods close the physiology gap to provide biological information otherwise unobtainable and to enhance cellular performance in therapeutic applications. Specific biomedical topics that will be discussed include, in vitro fertilization on a chip, microfluidic tissue engineering of small airway injuries, breast cancer metastasis on a chip, electrochemical biosensors, and development of tuneable nanofluidic systems towards applications in single molecule DNA analysis.


Sign in / Sign up

Export Citation Format

Share Document