Optical design of a high-spatial-resolution extreme-ultraviolet spectroheliograph for the transition region

2005 ◽  
Vol 44 (24) ◽  
pp. 5046 ◽  
Author(s):  
Giampiero Naletto ◽  
Silvano Fineschi ◽  
Ester Antonucci ◽  
Vania Da Deppo ◽  
Piergiorgio Nicolosi ◽  
...  
1980 ◽  
Vol 86 ◽  
pp. 53-55
Author(s):  
M. R. Kundu ◽  
A. P. Rao ◽  
F. T. Erskine ◽  
J. D. Bregman

Solar radio emission at centimeter and millimeter wavelengths originates in the chromosphere and transition region and is a useful probe for the temperature and density in these regions. High spatial resolution observations of the quiet sun provide valuable information on the structure of the solar atmosphere. We have performed high resolution (~ 6″ (E-W) x 15″ (N-S)) observations at 6 cm with the Westerbork Synthesis Radio Telescope (WSRT) in June 1976 in order to search for the radio analog of the supergranulation network and to study the extent and symmetry of limb brightening. The use of the WSRT for high spatial resolution solar mapping has been described by Bregman and Felli (1976), Kundu et al. (1977), and others.


2016 ◽  
Vol 98 ◽  
pp. 54-63
Author(s):  
Francesca Bonfigli ◽  
Enrico Nichelatti ◽  
Maria Aurora Vincenti ◽  
Rosa Maria Montereali

X-ray imaging represents a very relevant tool in basic and applied research fields due to the possibility of performing non-destructive investigations with high spatial resolution. We present innovative X-ray imaging detectors based on visible photoluminescence from aggregate electronic defects locally created in lithium fluoride (LiF) during irradiation. Among the peculiarities of these detectors, noteworthy ones are their very high spatial resolution (intrinsic ∼2 nm, standard ∼300 nm) across a large field of view (>10 cm2), wide dynamic range (>103) and their insensitivity to ambient light. The material photoluminescence response can be enhanced through the proper choice of reflecting substrates and multi-layer designs in the case of LiF films. The present investigation deals with the most appealing X-ray imaging applications, from simple lensless imaging configurations with commonly-available laboratory polychromatic X-ray sources to X-ray imaging-dedicated synchrotron beamlines in absorption and phase contrast experiments.


2020 ◽  
Vol 638 ◽  
pp. A63 ◽  
Author(s):  
Ainar Drews ◽  
Luc Rouppe van der Voort

Context. Penumbral microjets (PMJs) are short-lived, jet-like objects found in the penumbra of sunspots. They were first discovered in chromospheric lines and have later also been shown to exhibit signals in transition region (TR) lines. Their origin and manner of evolution is not yet settled. Aims. We perform a comprehensive analysis of PMJs through the use of spectral diagnostics that span from photospheric to TR temperatures to constrain PMJ properties. Methods We employed high-spatial-resolution Swedish 1-m Solar Telescope observations in the Ca II 8542 Å and H α lines, IRIS slit-jaw images, and IRIS spectral observations in the Mg II h & k lines, the Mg II 2798.75 Å & 2798.82 Å triplet blend, the C II 1334 Å & 1335 Å lines, and the Si IV 1394 Å & 1403 Å lines. We derived a wide range of spectral diagnostics from these and investigated other secondary phenomena associated with PMJs. Results. We find that PMJs exhibit varying degrees of signal in all of our studied spectral lines. We find low or negligible Doppler velocities and velocity gradients throughout our diagnostics and all layers of the solar atmosphere associated with these. Dark features in the inner wings of H α and Ca II 8542 Å imply that PMJs form along pre-existing fibril structures. We find evidence for upper photospheric heating in a subset of PMJs through emission in the wings of the Mg II triplet lines. There is little evidence for ubiquitous twisting motion in PMJs. There is no marked difference in onset-times for PMJ brightenings in different spectral lines. Conclusions. PMJs most likely exhibit only very modest mass-motions, contrary to earlier suggestions. We posit that PMJs form at upper photospheric or chromospheric heights at pre-existing fibril structures.


Author(s):  
K. Przybylski ◽  
A. J. Garratt-Reed ◽  
G. J. Yurek

The addition of so-called “reactive” elements such as yttrium to alloys is known to enhance the protective nature of Cr2O3 or Al2O3 scales. However, the mechanism by which this enhancement is achieved remains unclear. An A.E.M. study has been performed of scales grown at 1000°C for 25 hr. in pure O2 on Co-45%Cr implanted at 70 keV with 2x1016 atoms/cm2 of yttrium. In the unoxidized alloys it was calculated that the maximum concentration of Y was 13.9 wt% at a depth of about 17 nm. SIMS results showed that in the scale the yttrium remained near the outer surface.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


Sign in / Sign up

Export Citation Format

Share Document