scholarly journals Visualization and label-free quantification of microfluidic mixing using quantitative phase imaging

2017 ◽  
Vol 56 (22) ◽  
pp. 6341 ◽  
Author(s):  
GwangSik Park ◽  
Dongsik Han ◽  
GwangSu Kim ◽  
Seungwoo Shin ◽  
Kyoohyun Kim ◽  
...  
2017 ◽  
Author(s):  
GwangSik Park ◽  
Dongsik Han ◽  
GwangSu Kim ◽  
Seungwoo Shin ◽  
Kyoohyun Kim ◽  
...  

Microfluidic mixing plays a key role in various fields, including biomedicine and chemical engineering. To date, although various approaches for imaging microfluidic mixing have been proposed, they provide only quantitative imaging capability and require for exogenous labeling agents. Quantitative phase imaging techniques, however, circumvent these problems and offer label-free quantitative information about concentration maps of microfluidic mixing. We present the quantitative phase imaging of microfluidic mixing in various types of PDMS microfluidic channels with different geometries; the feasibility of the present method was validated by comparing it with the results obtained by theoretical calculation based on Fick’s law.


2021 ◽  
Author(s):  
DongHun Ryu ◽  
Hyeono Nam ◽  
Jessie Sungyun Jeon ◽  
YongKeun Park

Histopathological examination of blood cells plays a crucial role in the diagnosis of various diseases. However, it involves time-consuming and laborious staining procedures required for microscopic review by medical experts and is not directly applicable for point-of-care diagnosis in resource-limited locations. This study reports a dilution-, actuation- and label-free method for the analysis of individual red blood cells (RBCs) using a capillary microfluidic device and quantitative phase imaging. Blood, without any sample treatment, is directly loaded into a micrometer-thick channel such that it forms a quasi-monolayer inside the channel. The morphological and biochemical properties of RBCs, including hemoglobin concentration, hemoglobin content, and corpuscular volume, were retrieved using the refractive index tomograms of individual RBCs measured using 3D quantitative phase imaging. The deformability of individual RBCs was also obtained by measuring the dynamic membrane fluctuations. The proposed framework applies to other imaging modalities and biomedical applications, facilitating rapid and cost-effective diagnosis and prognosis of diseases.


Sign in / Sign up

Export Citation Format

Share Document