Abstract 6019: Identification of the neo-genesis of glioblastoma stem cells using label-free quantitative phase imaging

Author(s):  
Ed Luther ◽  
Livia P. Mendes ◽  
Vladimir P. Torchilin
2021 ◽  
Author(s):  
DongHun Ryu ◽  
Hyeono Nam ◽  
Jessie Sungyun Jeon ◽  
YongKeun Park

Histopathological examination of blood cells plays a crucial role in the diagnosis of various diseases. However, it involves time-consuming and laborious staining procedures required for microscopic review by medical experts and is not directly applicable for point-of-care diagnosis in resource-limited locations. This study reports a dilution-, actuation- and label-free method for the analysis of individual red blood cells (RBCs) using a capillary microfluidic device and quantitative phase imaging. Blood, without any sample treatment, is directly loaded into a micrometer-thick channel such that it forms a quasi-monolayer inside the channel. The morphological and biochemical properties of RBCs, including hemoglobin concentration, hemoglobin content, and corpuscular volume, were retrieved using the refractive index tomograms of individual RBCs measured using 3D quantitative phase imaging. The deformability of individual RBCs was also obtained by measuring the dynamic membrane fluctuations. The proposed framework applies to other imaging modalities and biomedical applications, facilitating rapid and cost-effective diagnosis and prognosis of diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
N. R. Subedi ◽  
P. S. Jung ◽  
E. L. Bredeweg ◽  
S. Nemati ◽  
S. E. Baker ◽  
...  

AbstractLight-sheet microscopy enables considerable speed and phototoxicity gains, while quantitative-phase imaging confers label-free recognition of cells and organelles, and quantifies their number-density that, thermodynamically, is more representative of metabolism than size. Here, we report the fusion of these two imaging modalities onto a standard inverted microscope that retains compatibility with microfluidics and open-source software for image acquisition and processing. An accelerating Airy-beam light-sheet critically enabled imaging areas that were greater by more than one order of magnitude than a Gaussian beam illumination and matched exactly those of quantitative-phase imaging. Using this integrative imaging system, we performed a demonstrative multivariate investigation of live-cells in microfluidics that unmasked that cellular noise can affect the compartmental localization of metabolic reactions. We detail the design, assembly, and performance of the integrative imaging system, and discuss potential applications in biotechnology and evolutionary biology.


2017 ◽  
Vol 56 (22) ◽  
pp. 6341 ◽  
Author(s):  
GwangSik Park ◽  
Dongsik Han ◽  
GwangSu Kim ◽  
Seungwoo Shin ◽  
Kyoohyun Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document