Three-Dimensional Visualization and Quantitative Characterization of Cerebral Microvasculature in Mice

Author(s):  
Danny Xie ◽  
Christian Crouzet ◽  
Katiana Khouri ◽  
Krystal LoPresti ◽  
Yuke Wang ◽  
...  
2013 ◽  
Vol 19 (3) ◽  
pp. 745-750 ◽  
Author(s):  
Juan Balach ◽  
Flavio Soldera ◽  
Diego F. Acevedo ◽  
Frank Mücklich ◽  
César A. Barbero

AbstractA new technique that allows direct three-dimensional (3D) investigations of mesopores in carbon materials and quantitative characterization of their physical properties is reported. Focused ion beam nanotomography (FIB-nt) is performed by a serial sectioning procedure with a dual beam FIB-scanning electron microscopy instrument. Mesoporous carbons (MPCs) with tailored mesopore size are produced by carbonization of resorcinol-formaldehyde gels in the presence of a cationic surfactant as a pore stabilizer. A visual 3D morphology representation of disordered porous carbon is shown. Pore size distribution of MPCs is determined by the FIB-nt technique and nitrogen sorption isotherm methods to compare both results. The obtained MPCs exhibit pore sizes of 4.7, 7.2, and 18.3 nm, and a specific surface area of ca. 560 m2/g.


2021 ◽  
Author(s):  
Mario ledesma-terron ◽  
Diego perez-dones ◽  
david G Miguez

We have developed an Object Segmentation, Counter and Analysis Resource (OSCAR) that is designed specifically to quantify densely packed biological samples with reduced signal-to-background ratio. OSCAR uses as input three dimensional images reconstructed from confocal 2D sections stained with dies such as nuclear marker and immunofluorescence labeling against specific antibodies to distinguish the cell types of interest. Taking advantage of a combination of arithmetic, geometric and statistical algorithms, OSCAR is able to reconstruct the objects in the 3D space bypassing segmentation errors due to the typical reduced signal to noise ration of biological tissues imaged in toto. When applied to the zebrafish developing retina, OSCAR is able to locate and identify the fate of each nuclei as a cycling progenitor or a terminally differentiated cell, providing a quantitative characterization of the dynamics of the developing vertebrate retina in space and time with unprecedented accuracy.


2012 ◽  
Vol 249-250 ◽  
pp. 563-566 ◽  
Author(s):  
Hong Bing Zhao ◽  
Xue Li ◽  
Feng Hua Wang ◽  
Yong Bei Cui

Three-dimensional geological modeling techniques, developed from 1980s, is a new geological technology used to make reservoir fine description and geological characterization with the combination of seismic, geological and reservoir exploration and development based on geostatistics. Three-dimensional geological modeling can achieve the quantitative characterization of the reservoir and heterogeneity of various scales. So far, it has been the most important content of reservoir description, what’s more, three-dimensional structure modeling can improve the accuracy and reliability of fine reservoir description through the establishment of three-dimensional reservoir model, the quantitative distribution of three-dimensional reservoir parameters and geometry.


Author(s):  
Jun KATAGIRI ◽  
Takashi MATSUSHIMA ◽  
Hidetaka SAOMOTO ◽  
Mori UTSUNO ◽  
Yasuo YAMADA

2011 ◽  
Vol 423 ◽  
pp. 77-88 ◽  
Author(s):  
Claudiu Bisu ◽  
Alain Gerard ◽  
Miron Zapciu ◽  
Olivier Cahuc

This paper proposes a method to vibration analysis in order to on-line monitoring of milling process quality. Adapting envelope analysis to characterize the milling tool materials is an important contribution to the qualitative and quantitative characterization of milling capacity and a step by modeling the three-dimensional cutting process. An experimental protocol was designed and developed for the acquisition, processing and analyzing three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. The research is focused on Hilbert transform optimization to evaluate the dynamic behavior of the machine/ tool/workpiece.


Sign in / Sign up

Export Citation Format

Share Document