scholarly journals Towards Personalized and Versatile Monitoring of Temperature Fields within Heterogeneous Tissues during Laser Therapies

2021 ◽  
Author(s):  
Jure Kosir ◽  
Daniele Vella ◽  
Matjaz Lukac ◽  
Matija Jezersek
Author(s):  
A. Baronnet ◽  
M. Amouric

The origin of mica polytypes has long been a challenging problem for crystal- lographers, mineralogists and petrologists. From the petrological point of view, interest in this field arose from the potential use of layer stacking data to furnish further informations about equilibrium and/or kinetic conditions prevailing during the crystallization of the widespread mica-bearing rocks. From the compilation of previous experimental works dealing with the occurrence domains of the various mica "polymorphs" (1Mr, 1M, 2M1, 2M2 and 3T) within water-pressure vs temperature fields, it became clear that most of these modifications should be considered as metastable for a fixed mica species. Furthermore, the natural occurrence of long-period (or complex) polytypes could not be accounted for by phase considerations. This highlighted the need of a more detailed kinetic approach of the problem and, in particular, of the role growth mechanisms of basal faces could play in this crystallographic phenomenon.


Author(s):  
Martin Devrient ◽  
Verena Wippo ◽  
Peter Jaeschke ◽  
Uwe Stute ◽  
Thomas Frick ◽  
...  

2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.


2000 ◽  
Author(s):  
Azer Yalin ◽  
Yuriy Ionikh ◽  
Alexander Meshchanov ◽  
Richard Miles

2019 ◽  
Vol 13 (4) ◽  
pp. 112-117 ◽  
Author(s):  
V.Sh. Shagapov ◽  
M.N. Zapivakhina

The numerical models for the injection of warm water (in the temperature range from 300 to 340 K) into a cold porous formation are considered. Simplified models describing the processes of heat and mass transfer are proposed. The influence of the parameters determining the initial state of the porous medium, the boundary pressure, temperature and moisture content on the rate of propagation of hydrodynamic and temperature fields in the porous medium is investigated. It has been established that it is economically feasible to melt frozen soils saturated with ice and gas (air) at a sufficiently low temperature of the injected water (about 300 K).


Sign in / Sign up

Export Citation Format

Share Document