scholarly journals High-speed optical modulators and signal processing

1982 ◽  
Author(s):  
T. Sueta ◽  
M. Izutsu
Author(s):  
Linjie Zhou ◽  
Yanyang Zhou ◽  
Minjuan Wang ◽  
Yiming Zhong ◽  
Yujie Xia ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 115
Author(s):  
Teemu Sillanpää ◽  
Alexander Smirnov ◽  
Pekko Jaatinen ◽  
Jouni Vuojolainen ◽  
Niko Nevaranta ◽  
...  

Non-contact rotor position sensors are an essential part of control systems in magnetically suspended high-speed drives. In typical active magnetic bearing (AMB) levitated high-speed machine applications, the displacement of the rotor in the mechanical air gap is measured with commercially available eddy current-based displacement sensors. The aim of this paper is to propose a robust and compact three-dimensional position sensor that can measure the rotor displacement of an AMB system in both the radial and axial directions. The paper presents a sensor design utilizing only a single unified sensor stator and a single shared rotor mounted target piece surface to achieve the measurement of all three measurement axes. The sensor uses an inductive measuring principle to sense the air gap between the sensor stator and rotor piece, which makes it robust to surface variations of the sensing target. Combined with the sensor design, a state of the art fully digital signal processing chain utilizing synchronous in-phase and quadrature demodulation is presented. The feasibility of the proposed sensor design is verified in a closed-loop control application utilizing a 350-kW, 15,000-r/min high-speed industrial induction machine with magnetic bearing suspension. The inductive sensor provides an alternative solution to commercial eddy current displacement sensors. It meets the application requirements and has a robust construction utilizing conventional electrical steel lamination stacks and copper winding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gayathri Pillai ◽  
Sheng-Shian Li

AbstractNonlinear physics-based harmonic generators and modulators are critical signal processing technologies for optical and electrical communication. However, most optical modulators lack multi-channel functionality while frequency synthesizers have deficient control of output tones, and they additionally require vacuum, complicated setup, and high-power configurations. Here, we report a piezoelectrically actuated nonlinear Microelectromechanical System (MEMS) based Single-Input-Multiple-Output multi-domain signal processing unit that can simultaneously generate programmable parallel information channels (> 100) in both frequency and spatial domain. This significant number is achieved through the combined electromechanical and material nonlinearity of the Lead Zirconate Titanate thin film while still operating the device in an ambient environment at Complementary-Metal–Oxide–Semiconductor compatible voltages. By electrically detuning the operation point along the nonlinear regime of the resonator, the number of electrical and light-matter interaction signals generated based on higher-order non-Eigen modes can be controlled meticulously. This tunable multichannel generation enabled microdevice is a potential candidate for a wide variety of applications ranging from Radio Frequency communication to quantum photonics with an attractive MEMS-photonics monolithic integration ability.


2015 ◽  
Vol 719-720 ◽  
pp. 534-537
Author(s):  
Wen Hua Ye ◽  
Huan Li

With the development of digital signal processing technology, the demand on the signal processor speed has become increasingly high. This paper describes the hardware design of carrier board in high-speed signal processing module, which using Xilinx's newest Virtex-7 FPGA family XC7VX485T chip, and applying high-speed signal processing interface FMC to transport and communicate high-speed data between carrier board and daughter card with high-speed ADC and DAC. This design provides a hardware implementation and algorithm verification platform for high-speed digital signal processing system.


Sign in / Sign up

Export Citation Format

Share Document