scholarly journals Controllable multichannel acousto-optic modulator and frequency synthesizer enabled by nonlinear MEMS resonator

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gayathri Pillai ◽  
Sheng-Shian Li

AbstractNonlinear physics-based harmonic generators and modulators are critical signal processing technologies for optical and electrical communication. However, most optical modulators lack multi-channel functionality while frequency synthesizers have deficient control of output tones, and they additionally require vacuum, complicated setup, and high-power configurations. Here, we report a piezoelectrically actuated nonlinear Microelectromechanical System (MEMS) based Single-Input-Multiple-Output multi-domain signal processing unit that can simultaneously generate programmable parallel information channels (> 100) in both frequency and spatial domain. This significant number is achieved through the combined electromechanical and material nonlinearity of the Lead Zirconate Titanate thin film while still operating the device in an ambient environment at Complementary-Metal–Oxide–Semiconductor compatible voltages. By electrically detuning the operation point along the nonlinear regime of the resonator, the number of electrical and light-matter interaction signals generated based on higher-order non-Eigen modes can be controlled meticulously. This tunable multichannel generation enabled microdevice is a potential candidate for a wide variety of applications ranging from Radio Frequency communication to quantum photonics with an attractive MEMS-photonics monolithic integration ability.

Author(s):  
Salinee Choowitsakunlert ◽  
Rardchawadee Silapunt ◽  
Hideki Yokoi

This paper presents a study of the effect of antiferromagnetic (AFM) integration on the nano AFM-pinned multiferroic (MF) composites structure. The nano MF composites structure is a potential candidate for a future magnetic read head. The simulation of the AFM/ferromagnetic (FM) bilayers characteristics and the evaluation of the magnetoelectric (ME) effect induced in the 1-dimensional (1D) L-T mode model of AFM-pinned structure of AFM/FM/Ferroelectric (FE)/FM/AFM are performed. FM, FE, and two types of AFM materials are Terfenol-D, lead zirconate titanate (PZT), and PtMn and Cr2O3, respectively. The magnetoelectric (ME) effect is investigated using the 1D standard square law. Magnetic-field induced strain in the FM layer, piezoelectric response of the PZT layer, and the ME coefficient are determined. Specifically, the influence of AFM on the MF composites structure for various AFM thicknesses is of interest. It is found that the maximum electric field and potential across the PZT layer are achieved at 2.7 nm thick of PtMn. The result is well agreed by associated magnetic field-induced strain and ME coefficient.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 260-264 ◽  
Author(s):  
E. M. Griswold ◽  
M. Sayer ◽  
D. T. Amm ◽  
I. D. Calder

Ferroelectric thin films have recently proven viable for nonvolatile memory applications in semiconductor technology. Current research is focused on the development of processing technologies and deposition on metallized semiconductor substrates. In this study, niobium-doped lead zirconate titanate thin films were prepared by a dc magnetron-sputtering technique using a multielement metal target. Films were deposited on indium tin oxide coated glass and on metallizations on silicon substrates. The crystallographic structure and surface morphology of the films was examined by scanning electron microscopy and X-ray diffraction as a function of processing variables such as sputtering pressure, film thickness, and niobium content. Electrical characterization of the films is discussed in terms of ferroelectric hysteresis and polarization properties. Improved ferroelectric properties are achieved through a densified structure resulting from niobium-doping.


2020 ◽  
Vol 2 (1) ◽  
pp. 55 ◽  
Author(s):  
Amanda Binotto ◽  
Bruno Albuquerque de Castro ◽  
Vitor Vecina dos Santos ◽  
Jorge Alfredo Ardila Rey ◽  
André Luiz Andreoli

The development of sensors applied to failure detection systems for power transformers is a critical concern since this device stands out as a strategic component of the electric power system. Among the most common issues is the presence of partial discharges (PDs) in the insulation system of the transformer, which can lead the device to total failure. Aiming to prevent unexpected damages, several PD monitoring approaches have been developed. One of the most promising is the Acoustic Emission (AE) technique, which captures the acoustic signals generated by PDs using piezoelectric sensors. Although many studies have proved the effectiveness of AE, most signal processing approaches are strictly related to the frequency analysis of PD signals, which can hide important information such as the repetition rate of the failure. This article presents a comparison between two types of piezoelectric transducers: the microfiber composite (MFC) and the lead zirconate titanate (PZT). To ensure the detection of multiple PDs, time–frequency analysis was carried out by short-time Fourier transform (STFT). Intending to compare the sensibility of the transducers, the AE signals were windowed, and the root mean square (RMS) value was extracted for each part of the signal. The results indicate that spectrogram and RMS analysis have great potential to detect multiple PD activity. Although MFC was two times more sensitive to PD detection than the PZT sensor, PZT presents a higher frequency response band (0–100 kHz) than MFC (80 kHz).


Author(s):  
M.L.A. Dass ◽  
T.A. Bielicki ◽  
G. Thomas ◽  
T. Yamamoto ◽  
K. Okazaki

Lead zirconate titanate, Pb(Zr,Ti)O3 (PZT), ceramics are ferroelectrics formed as solid solutions between ferroelectric PbTiO3 and ant iferroelectric PbZrO3. The subsolidus phase diagram is shown in figure 1. PZT transforms between the Ti-rich tetragonal (T) and the Zr-rich rhombohedral (R) phases at a composition which is nearly independent of temperature. This phenomenon is called morphotropism, and the boundary between the two phases is known as the morphotropic phase boundary (MPB). The excellent piezoelectric and dielectric properties occurring at this composition are believed to.be due to the coexistence of T and R phases, which results in easy poling (i.e. orientation of individual grain polarizations in the direction of an applied electric field). However, there is little direct proof of the coexistence of the two phases at the MPB, possibly because of the difficulty of distinguishing between them. In this investigation a CBD method was found which would successfully differentiate between the phases, and this was applied to confirm the coexistence of the two phases.


1991 ◽  
Vol 223 ◽  
Author(s):  
Thomas M. Graettinger ◽  
O. Auciello ◽  
M. S. Ameen ◽  
H. N. Al-Shareef ◽  
K. Gifford ◽  
...  

ABSTRACTFerroelectric oxide films have been studied for their potential application as integrated optical materials and nonvolatile memories. Electro-optic properties of potassium niobate (KNbO3) thin films have been measured and the results correlated to the microstructures observed. The growth parameters necessary to obtain single phase perovskite lead zirconate titanate (PZT) thin films are discussed. Hysteresis and fatigue measurements of the PZT films were performed to determine their characteristics for potential memory devices.


2019 ◽  
Author(s):  
Chem Int

Model was developed for the prediction of polarization characteristics in a dielectric material exhibiting piezoelectricity and electrostriction based on mathematical equations and MATLAB computer simulation software. The model was developed based on equations of polarization and piezoelectric constitutive law and the functional coefficient of Lead Zirconate Titanate (PZT) crystal material used was 2.3×10-6 m (thickness), the model further allows the input of basic material and calculation of parameters of applied voltage levels, applied stress, pressure, dielectric material properties and so on, to generate the polarization curve, strain curve and the expected deformation change in the material length charts. The mathematical model revealed that an application of 5 volts across the terminals of a 2.3×10-6 m thick dielectric material (PZT) predicted a 1.95×10-9 m change in length of the material, which indicates piezoelectric properties. Both polarization and electric field curve as well as strain and voltage curve were also generated and the result revealed a linear proportionality of the compared parameters, indicating a resultant increase in the electric field yields higher polarization of the dielectric materials atmosphere.


2020 ◽  
Vol 8 ◽  
pp. 14-21
Author(s):  
Surya Man Koju ◽  
Nikil Thapa

This paper presents economic and reconfigurable RF based wireless communication at 2.4 GHz between two vehicles. It implements digital VLSI using two Spartan 3E FPGAs, where one vehicle receives the information of another vehicle and shares its own information to another vehicle. The information includes vehicle’s speed, location, heading and its operation, such as braking status and turning status. It implements autonomous vehicle technology. In this work, FPGA is used as central signal processing unit which is interfaced with two microcontrollers (ATmega328P). Microcontroller-1 is interfaced with compass module, GPS module, DF Player mini and nRF24L01 module. This microcontroller determines the relative position and the relative heading as seen from one vehicle to another. Microcontroller-2 is used to measure the speed of vehicle digitally. The resulting data from these microcontrollers are transmitted separately and serially through UART interface to FPGA. At FPGA, different signal processing such as speed comparison, turn comparison, distance range measurement and vehicle operation processing, are carried out to generate the voice announcement command, warning signals, event signals, and such outputs are utilized to warn drivers about potential accidents and prevent crashes before event happens.


2020 ◽  
Author(s):  
Dixiong Wang ◽  
Sinan Dursun ◽  
Lisheng Gao ◽  
Carl S. Morandi ◽  
Clive A. Randall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document