Realtime signal processing of a compact high-speed photo-electron detection system

Author(s):  
Ming Yan ◽  
Binkang Li ◽  
Shaohua Yang ◽  
Mingan Guo ◽  
Tongding Luo
2013 ◽  
Vol 380-384 ◽  
pp. 833-836
Author(s):  
Yu Tian Zhu ◽  
Hao Wu ◽  
Zhao Liu

An online detecting system is developed to check the function of oil control valve. This system consists of hydraulic detecting platform, signal collecting, signal processing and upper computer. It uses a domestic controller as the main control unit and the control program is developed. The signal conditioning board and the software of upper computer within LabVIEW environment are developed. By using this system, the signals of all sensors can be collected, conditioned, displayed and recorded quickly. The application shows that this system has been proved with the characteristics of high speed, high automation and detection precision.


2020 ◽  
pp. 1-10
Author(s):  
Chunhuan Song ◽  
Fucai Qian

With its unique array arrangement, the detection system radar has both space diversity gain and waveform diversity gain, and is currently recognized as a stealth target buster. The detection system radar is applied to a high-speed moving platform. Using distributed cooperative detection technology, non-coherent fusion detection based on signals can further improve the detection of stealthy targets. Aiming at the high-speed motion radar signal processing algorithm, this paper mainly studies the following three aspects: the first content is the analysis of the waveform characteristics: the basic principles and characteristics of the radar are explained; then the three orthogonal waveforms commonly used in the radar are introduced, including Stepwise frequency division chirp signal, quadrature phase coded signal and mixed-signal; the second content detects radar targets and analyzes the correlation between the scattering coefficients of different radar channels; for scenarios where the scattering coefficients between the channels are non-coherent Introduced two kinds of non-coherent fusion detectors based on generalized likelihood ratio algorithm: centralized detector and double threshold detector; the third content radar multi-target pairing is aimed at the problem of radar multi-target pairing with large inertial navigation error. A multi-target pairing algorithm that uses target delay information and combines the radar’s multi-channel information redundancy characteristics is presented. An expression for judging the correctness of target pairing is derived, and the target pairing steps are given. The relationship between the amount of algorithm operation and the number of radar stations and the number of targets is analyzed in conclusion.


Author(s):  
M. Hibino ◽  
K. Irie ◽  
R. Autrata ◽  
P. schauer

Although powdered phosphor screens are usually used for scintillators of STEM, it has been found that the phosphor screen of appropriate thickness should be used depending on the accelerating voltage, in order to keep high detective quantum efficiency. 1 It has been also found that the variation in sensitivity, due to granularity of phosphor screens, makes the measurement of fine electron probe difficult and that the sensitivity reduces with electron irradiation specially at high voltages.In order to find out a preferable scintillator for STEM, single crystals of YAG (yttrium aluminum garnet), which are used for detecting secondary and backscattered electrons in SEM were investigated and compared with powdered phosphor screens, at the accelerating voltages of 100kV and 1 MV. A conventional electron detection system, consisting of scintillator, light guide and PMT (Hamamatsu Photonics R268) was used for measurements. Scintillators used are YAG single crystals of 1.0 to 3.2mm thicknesses (with surfaces matted for good interface to the light guide) and of 0.8mm thickness (with polished surface), and powdered P-46 phosphor screens of 0.07mm and 1.0mm thicknesses for 100kV and 1MV, respectively. Surfaces on electron-incidence side of all scintillators are coated with reflecting layers.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 115
Author(s):  
Teemu Sillanpää ◽  
Alexander Smirnov ◽  
Pekko Jaatinen ◽  
Jouni Vuojolainen ◽  
Niko Nevaranta ◽  
...  

Non-contact rotor position sensors are an essential part of control systems in magnetically suspended high-speed drives. In typical active magnetic bearing (AMB) levitated high-speed machine applications, the displacement of the rotor in the mechanical air gap is measured with commercially available eddy current-based displacement sensors. The aim of this paper is to propose a robust and compact three-dimensional position sensor that can measure the rotor displacement of an AMB system in both the radial and axial directions. The paper presents a sensor design utilizing only a single unified sensor stator and a single shared rotor mounted target piece surface to achieve the measurement of all three measurement axes. The sensor uses an inductive measuring principle to sense the air gap between the sensor stator and rotor piece, which makes it robust to surface variations of the sensing target. Combined with the sensor design, a state of the art fully digital signal processing chain utilizing synchronous in-phase and quadrature demodulation is presented. The feasibility of the proposed sensor design is verified in a closed-loop control application utilizing a 350-kW, 15,000-r/min high-speed industrial induction machine with magnetic bearing suspension. The inductive sensor provides an alternative solution to commercial eddy current displacement sensors. It meets the application requirements and has a robust construction utilizing conventional electrical steel lamination stacks and copper winding.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5279
Author(s):  
Dong-Hoon Kwak ◽  
Guk-Jin Son ◽  
Mi-Kyung Park ◽  
Young-Duk Kim

The consumption of seaweed is increasing year by year worldwide. Therefore, the foreign object inspection of seaweed is becoming increasingly important. Seaweed is mixed with various materials such as laver and sargassum fusiforme. So it has various colors even in the same seaweed. In addition, the surface is uneven and greasy, causing diffuse reflections frequently. For these reasons, it is difficult to detect foreign objects in seaweed, so the accuracy of conventional foreign object detectors used in real manufacturing sites is less than 80%. Supporting real-time inspection should also be considered when inspecting foreign objects. Since seaweed requires mass production, rapid inspection is essential. However, hyperspectral imaging techniques are generally not suitable for high-speed inspection. In this study, we overcome this limitation by using dimensionality reduction and using simplified operations. For accuracy improvement, the proposed algorithm is carried out in 2 stages. Firstly, the subtraction method is used to clearly distinguish seaweed and conveyor belts, and also detect some relatively easy to detect foreign objects. Secondly, a standardization inspection is performed based on the result of the subtraction method. During this process, the proposed scheme adopts simplified and burdenless calculations such as subtraction, division, and one-by-one matching, which achieves both accuracy and low latency performance. In the experiment to evaluate the performance, 60 normal seaweeds and 60 seaweeds containing foreign objects were used, and the accuracy of the proposed algorithm is 95%. Finally, by implementing the proposed algorithm as a foreign object detection platform, it was confirmed that real-time operation in rapid inspection was possible, and the possibility of deployment in real manufacturing sites was confirmed.


Sign in / Sign up

Export Citation Format

Share Document