scholarly journals Digital Petri Dish for On-chip Cell Monitoring

Author(s):  
Guoan Zheng ◽  
Seung Ah Lee ◽  
Xiaoze Ou ◽  
Changhuei Yang
Keyword(s):  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Joachim Wiest

Label-free monitoring of living cells is used in various applications such as drug development, toxicology, regenerative medicine or environmental monitoring. The most prominent methods for monitoring the extracellular acidification, oxygen consumption, electrophysiological activity and morphological changes of living cells are described. Furthermore, the intelligent mobile lab (IMOLA) – a computer controlled system integrating cell monitoring and automated cell cultivation – is described as an example of a cell-based system for microphysiometry. Results from experiments in the field of environmental monitoring using algae are presented. An outlook toward the development of an organ-on-chip technology is given.


2007 ◽  
Vol 7 (3) ◽  
pp. 440-447 ◽  
Author(s):  
Somashekar Bangalore Prakash ◽  
Pamela Abshire

2012 ◽  
Vol 18 (S2) ◽  
pp. 1220-1221
Author(s):  
G. Zheng ◽  
S.A. Lee ◽  
X. Ou ◽  
Y. Antebi ◽  
M.B. Elowitz ◽  
...  
Keyword(s):  

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


2016 ◽  
Vol 1 ◽  
Author(s):  
Joachim Wiest

Label-free monitoring of living cells is used in various applications such as drug development, toxicology, regenerative medicine or environmental monitoring. The most prominent methods for monitoring the extracellular acidification, oxygen consumption, electrophysiological activity and morphological changes of living cells are described. Furthermore, the intelligent mobile lab (IMOLA) – a computer controlled system integrating cell monitoring and automated cell cultivation – is described as an example of a cell-based system for microphysiometry. Results from experiments in the field of environmental monitoring using algae are presented. An outlook toward the development of an organ-on-chip technology is given.


2005 ◽  
Author(s):  
Pamela Abshire ◽  
Elisabeth Smela ◽  
Benjamin Shapiro

Author(s):  
Molchanov Pavel G ◽  
Moreno-Cuevas Jorge E ◽  
Hernández Martin ◽  
Gonzalez-Garza Maria Teresa ◽  
Garcia Charles ◽  
...  
Keyword(s):  

Author(s):  
Sueon Kim ◽  
In Hyuk Jang ◽  
Won Gu Lee

Here, we report a threshold limit value (TLV) of on-chip cytotoxicity of Nepali Chiya, the Nepali traditional black tea. To demonstrate our proof-of-concept validation, we used the active sealing chip with serial dilution that can directly perform on-chip cytotoxicity testing onto the cells cultured in a petri dish. In our experiments, the TLV for mortality on HeLa cells was observed as 400 μg/ml for Nepali Chiya extract. We believe this approach would be a rapid and simple method for on-chip TLV screening of potability of tea extract at the laboratory level, and furthermore as a new potential drug supplement in pharmaceutical industries.


Author(s):  
T. M. Crisp ◽  
F.R. Denys

The purpose of this paper is to present observations on the fine structure of rat granulosa cell cultures grown in the presence of an adenohypophyseal explant and to correlate the morphology of these cells with progestin secretion. Twenty-six day old immature female rats were given a single injection of 5 IU pregnant mares serum gonadotropin (PMS) in order to obtain ovaries with large vesicular follicles. At 66 hrs. post-PMS administration (estrus indicated by vaginal smear cytology), the ovaries were removed and placed in a petri dish containing medium 199 and 100 U penicillin/streptomycin (P/S)/ml. Under a 20X magnification dissecting microscope, some 5-8 vesicular follicles/ovary were punctured and the granulosa cells were expressed into the surrounding medium. The cells were transferred to centrifuge tubes and spun down at 1000 rpm for 5 mins.


Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


Author(s):  
Wm. J. Arnold ◽  
J. Russo ◽  
H. D. Soule ◽  
M. A. Rich

Our studies of mammary tumor virus have included the application of the unlabeled antibody enzyme method of Sternberger to mammary tumor derived mouse cells in culture and observation with an electron microscope. The method avoids the extravagance of covalent binding of indicator molecules (horseradish peroxidase) with precious antibody locator molecules by relying instead upon specific antibody-antigen linkages. Our reagents included: Primary Antibody, rabbit anti-murine mammary tumor virus (MuMTV) which was antiserum 113 AV-2; Secondary Antibody, goat anti-rabbit IgG gamma chain (Cappel Laboratories); andthe Indicator, rabbit anti-horseradish peroxidase - horseradish peroxidase complex (PAP) (Cappel Labs.). Dilutions and washes were made in 0.05 M Tris 0.15 M saline buffered to pH 7.4. Cell monolayers, after light fixation in glutaraldehyde, were incubated in place by a protocol adapted from Sternberger and Graham and Karnovsky, then embedded by our usual method for monolayers. Reagents were confined to specific areas by neoprene 0-rings (Parker Seal Co.) reducing the amount of reagent needed to 50 microliters, 1/6th of that required to wet a 35 mm petri dish.


Sign in / Sign up

Export Citation Format

Share Document