Super-resolution light-sheet add-on microscopy (SLAM) enabling isotropic high-resolution 3D imaging on conventional epifluorescence microscope

Author(s):  
Fang Zhao ◽  
Lanxin Zhu ◽  
Chunyu Fang ◽  
Peng Fei
Lab on a Chip ◽  
2021 ◽  
Author(s):  
Regan P Moore ◽  
Ellen C O’Shaughnessy ◽  
Yu Shi ◽  
Ana T Nogueira ◽  
Katelyn M Heath ◽  
...  

We present a microfluidic device compatible with high resolution light sheet and super-resolution microscopy. Our device is a 150 μm thick chamber with a transparent fluorinated ethylene propylene (FEP) cover...


Methods ◽  
2020 ◽  
Vol 174 ◽  
pp. 11-19 ◽  
Author(s):  
Yun-Chi Tsai ◽  
Wei-Chun Tang ◽  
Christine Siok Lan Low ◽  
Yen-Ting Liu ◽  
Jyun-Sian Wu ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Xiaoyan Li ◽  
Yubing Han ◽  
Wenjie Liu ◽  
Cuifang Kuang ◽  
Xu Liu ◽  
...  

Three-dimensional (3D) imaging using dual-lens fluorescence microscopies is popular in observing fluorescently labeled biological samples, such as mammalian/model animal cells, tissues, and embryos. Specifically, dual-lens super-resolution fluorescence microscopy methods using two opposing objective lenses allow significantly higher axial resolution and better signal to noise ratio than traditional single-lens counterparts, and thus distinguish more details in 3D images of fine intracellular structures. For 3D imaging of thick tissues and entire embryos, dual-lens light-sheet fluorescence microscopy methods using two objective lenses, either orthogonal or non-orthogonal, to achieve selective plane illumination, can meet the requirements, and thus can be used to observe embryo development and structures of interest in thick tissues. This review summarizes both dual-lens fluorescence microscopy methods, including their principles, configurations, and 3D imaging applications, providing a guideline for biological laboratories with different 3D imaging needs.


Author(s):  
Stylianos E. Psycharakis ◽  
Evangelos Liapis ◽  
Athanasios Zacharopoulos ◽  
Mariam-Eleni Oraiopoulou ◽  
Chrysoula Aivalioti ◽  
...  

2020 ◽  
Author(s):  
Stella Corsetti ◽  
Philip Wijesinghe ◽  
Persephone B. Poulton ◽  
Shuzo Sakata ◽  
Khushi Vyas ◽  
...  

AbstractImaging across length scales and in depth has been an important pursuit of widefield optical imaging. This promises to reveal fine cellular detail within a widefield snapshot of a tissue sample. Current advances often sacrifice resolution through selective sub-sampling to provide a wide field of view in a reasonable time scale. We demonstrate a new avenue for recovering high-resolution images from sub-sampled data in light-sheet microscopy using deep-learning super-resolution. We combine this with the use of a widefield Airy beam to achieve high-resolution imaging over extended fields of view and depths. We characterise our method on fluorescent beads as test targets. We then demonstrate improvements in imaging amyloid plaques in a cleared brain from a mouse model of Alzheimer’s disease, and in excised healthy and cancerous colon and breast tissues. This development can be widely applied in all forms of light sheet microscopy to provide a two-fold increase in the dynamic range of the imaged length scale. It has the potential to provide further insight into neuroscience, developmental biology and histopathology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dwaipayan Adhya ◽  
George Chennell ◽  
James A. Crowe ◽  
Eva P. Valencia-Alarcón ◽  
James Seyforth ◽  
...  

Abstract Background The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes—in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points. Results Conventional approaches to imaging hCS by confocal microscopy were limited in their ability to image effectively into intact spheroids. Conversely, volumetric acquisition by ALSM offered superior imaging through intact, non-clarified, in vitro tissues, in both speed and resolution when compared to conventional confocal imaging systems. Furthermore, optimised immunohistochemistry and optical clearing of hCSs afforded improved imaging at depth. This permitted visualization of the morphology of the inner lumen of neural rosettes. Conclusion We present an optimized methodology that takes advantage of an ALSM system that can rapidly image intact 3D brain organoids at high resolution while retaining a large field of view. This imaging modality can be applied to both non-cleared and cleared in vitro human brain spheroids derived from hiPSCs for precise examination of their internal 3D structures. This process represents a rapid, highly efficient method to examine and quantify in 3D the formation of key structures required for the coordination of neurodevelopmental processes in both health and disease states. We posit that this approach would facilitate investigation of human neurodevelopmental processes in vitro.


2021 ◽  
Vol 557 ◽  
pp. 8-13
Author(s):  
Xiaofei Qin ◽  
Chong Chen ◽  
Linbo Wang ◽  
Xiaohu Chen ◽  
Yong Liang ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 1944
Author(s):  
Xiaoming Liu ◽  
Menghua Wang

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has been a reliable source of ocean color data products, including five moderate (M) bands and one imagery (I) band normalized water-leaving radiance spectra nLw(λ). The spatial resolutions of the M-band and I-band nLw(λ) are 750 m and 375 m, respectively. With the technique of convolutional neural network (CNN), the M-band nLw(λ) imagery can be super-resolved from 750 m to 375 m spatial resolution by leveraging the high spatial resolution features of I1-band nLw(λ) data. However, it is also important to enhance the spatial resolution of VIIRS-derived chlorophyll-a (Chl-a) concentration and the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), as well as other biological and biogeochemical products. In this study, we describe our effort to derive high-resolution Kd(490) and Chl-a data based on super-resolved nLw(λ) images at the VIIRS five M-bands. To improve the network performance over extremely turbid coastal oceans and inland waters, the networks are retrained with a training dataset including ocean color data from the Bohai Sea, Baltic Sea, and La Plata River Estuary, covering water types from clear open oceans to moderately turbid and highly turbid waters. The evaluation results show that the super-resolved Kd(490) image is much sharper than the original one, and has more detailed fine spatial structures. A similar enhancement of finer structures is also found in the super-resolved Chl-a images. Chl-a filaments are much sharper and thinner in the super-resolved image, and some of the very fine spatial features that are not shown in the original images appear in the super-resolved Chl-a imageries. The networks are also applied to four other coastal and inland water regions. The results show that super-resolution occurs mainly on pixels of Chl-a and Kd(490) features, especially on the feature edges and locations with a large spatial gradient. The biases between the original M-band images and super-resolved high-resolution images are small for both Chl-a and Kd(490) in moderately to extremely turbid coastal oceans and inland waters, indicating that the super-resolution process does not change the mean values of the original images.


Sign in / Sign up

Export Citation Format

Share Document