scholarly journals A 30GHz impulse radiator with on-chip antennas for high-resolution 3D imaging

Author(s):  
Peiyu Chen ◽  
Aydin Babakhani
Keyword(s):  
2013 ◽  
Vol 8 (12) ◽  
pp. C12029-C12029 ◽  
Author(s):  
A Cecilia ◽  
E Hamann ◽  
T Koenig ◽  
F Xu ◽  
Y Cheng ◽  
...  

2021 ◽  
Author(s):  
Bindong Gao ◽  
Fangzheng Zhang ◽  
Guanqun Sun ◽  
Shilong Pan

2021 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou

Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. This protocol aims to standardise micro-CT scanning procedures for embryos and juveniles of the marine gastropod species Hexaplex trunculus.


Author(s):  
Christopher L. Hoy ◽  
Jay Stockley ◽  
Kelly Kluttz ◽  
Doug McKnight ◽  
Lance Hosting ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2622 ◽  
Author(s):  
Victoire Rérolle ◽  
Eric Achterberg ◽  
Mariana Ribas-Ribas ◽  
Vassilis Kitidis ◽  
Ian Brown ◽  
...  

Increasing atmospheric CO2 concentrations are resulting in a reduction in seawater pH, with potential detrimental consequences for marine organisms. Improved efforts are required to monitor the anthropogenically driven pH decrease in the context of natural pH variations. We present here a high resolution surface water pH data set obtained in summer 2011 in North West European Shelf Seas. The aim of our paper is to demonstrate the successful deployment of the pH sensor, and discuss the carbonate chemistry dynamics of surface waters of Northwest European Shelf Seas using pH and ancillary data. The pH measurements were undertaken using spectrophotometry with a Lab-on-Chip pH sensor connected to the underway seawater supply of the ship. The main processes controlling the pH distribution along the ship’s transect, and their relative importance, were determined using a statistical approach. The pH sensor allowed 10 measurements h−1 with a precision of 0.001 pH units and a good agreement with pH calculated from a pair of discretely sampled carbonate variables dissolved inorganic carbon (DIC), total alkalinity (TA) and partial pressure of CO2 (pCO2) (e.g., pHDICpCO2). For this summer cruise, the biological activity formed the main control on the pH distribution along the cruise transect. This study highlights the importance of high quality and high resolution pH measurements for the assessment of carbonate chemistry dynamics in marine waters.


Sign in / Sign up

Export Citation Format

Share Document